VOLUME 10 NOMOR 2 DESEMBER 2023

JURNAL BIOTEKNOLOGI & BIOSAINS INDONESIA

Homepage Jurnal: http://ejournal.brin.go.id/JBBI/index

IN-SILICO ANALYSIS OF SYMBIONT BACTERIA DIVERSITY IN THE MIDGUT OF Aedes aegyptiUSING 16S rDNA MOLECULAR MARKERS DATABASE

Analisis In-Silico Diversitas Bakteri Simbion Asal *Midgut Aedes aegypti* Berdasarkan Database Marka Molekuler 16S rDNA

Syubbanul Wathon, Aufar Finasrullah, Rike Oktarianti, Kartika Senjarini* Biology Department, Faculty of Mathematics and Natural Sciences, University of Jember JI. Kalimantan No. 37, Kampus Tegalboto, Sumbersari, Jember, 68121, Jawa Timur, Indonesia *Email: senjarini@unej.ac.id

ABSTRACT

Dengue Hemorrhagic Fever (DHF) is caused by the dengue virus, which is transmitted through Aedes aegypti mosquitoes when they feed on human blood. To effectively control the DHF vector, it is crucial to accurately characterize the symbiont bacteria associated with Ae. aegypti through an in-silico approach to identify potential targets. This study utilized in-silico analysis based on the 16S rDNA molecular marker to explore the diversity of symbiont bacteria obtained from bioinformatics databases. The analysis and visualization of bacterial diversity were conducted using the Pathosystem Resource Integration Center (PATRIC). The analysis results revealed that bacterial diversity in the midgut of Ae. aegypti, categorizedas culturable and non-culturable bacteria, exhibited similar abundance patterns at the family level, albeit with varying detection rates. The most dominant taxa included the phylum Proteobacteria, class Gammaproteobacteria, category, the dominant taxa were the genus Salmonella and species Salmonella enterica, whereas the non-culturable bacteria category indicated the prevalence of the genus Escherichia and species Escherichia coli.

Keywords: bacteria, bioinformatics, database, dengue, symbiont

ABSTRAK

Demam Berdarah Deng ue (DBD) merup akan p enyakit infeksi virus d eng ue yang ditransmisikan melalui vektor *Aedes aegypti* ketika *blood feeding* kepad a manusia. Karakterisasi bakteri simbio n dari *midgut Ae. aegypti* untuk menspesifikkan target potensial seb agai agen pengendalian vektor DBD dap at dilakukan melalui pend ekatan *in-silico*. Analisis *in-silico* dilakukan b erd asarkan d ata marka molekuler 16S rDNA untuk memahami diversitas bakteri simbio n yang dikoleksi dari database bioinformatika. Analisis d an visualisasi diversitas bakteri menggunakan *software Pathosystem Resource Integration Center (PATRIC)*. Hasil analisis *in-silico* diversitas bakteri dari *midgut Ae. aegypti* kategori kultur dan tid ak dap at dikulturkan menunjukkan kesamaan kelimpahan *Taxa* yang dominan hingg a pada tingkat Famili namun deng an persentase yang berbed a. Data *Taxa* paling dominan melip uti Filum Proteobacteria, Kelas Gammaproteobacteria, Ordo *Enterobacterales*, dan Famili Enterobacteriaceae. Kategori bakteri kultur menunjukkan *Taxa* dominan Genus *Salmonella* dan Sp esies *Salmonella enterica*, sedangkan kategori b akteri yang tidak dap at dikulturkan menunjukkan Taxa dominan genus *Escherichia* dan spesies *Escherichia coli*.

Kata Kunci: bakteri, bioinformatika, database, dengue, simbion

INTRODUCTION

Dengue Hemorrhagic Fever (DHF) remains a global annual issue in tropical and subtropical regions. Approximately twothirds of the world's population is highly vulnerable to DHF, with reported cases ranging from 100 to 390 million each year (Sun et al. 2020). DHF has been confirmed as endemic in 128 countries, including Indonesia (Koh et al. 2018). In 2021, Indonesia reported a total of 73,518 DHFcases with 661 deaths (KemenKes RI 2022). The infection of DHF is caused by the dengue virus, transmitted to humans through the vector *Ae. aegypti* (Harapan et al. 2020).

The primary vector for dengue transmission is the female Ae. aegypti mosquito (Malassigné et al. 2020). Transmission of the dengue virus can occur when female Ae. *aegypti* mosquitoes feed on DHF patients, facilitating the transfer of the virus from the mosquito's body to humans (Mapder et al. 2020). The success of virus transmission to humans depends on its abilityto infect various mosquito organs involved in dengue virus transmission, including the midgut, hemocoel, and salivary glands.

The midgut serves as an incubation site for the dengue virus (Koh et al. 2018). Once the virus has successfully multiplied, it migrates to the salivary glands through the hemocoel, and can be transmitted to healthy individuals during mosquito feeding (Zhang and Wang, 2020). However, transmission may fail when the dengue virus reaches the midgut, as the mosquito's natural immune response inhibits virus replication (Nouzova et al. 2019).

Mosquitoes possess physical, physiological, and molecular defense mechanisms as part of their immune system (Kumar et al. 2018). The physical defense is the first layer of defense, inhibiting pathogen infection through the Peritrophic Matrix layer (Simões et al. 2018). Physiological and molecular defenses are mediated by physiological processes and gene expression (Lee et al. 2019). To complete the transmission cycle, the dengue virus must penetrate these layers in the midgut (Kumar et al. 2018). Symbiotic bacteria can activate several defense mechanisms in the midgut upon detecting pathogen infections, such as dengue virus (Scolari et al. 2019). Additionally, symbiotic bacteria can inhibit dengue infection by secreting secondary metabolites (Gao et al. 2020).

The isolation and exploration of symbiotic bacteria establish an interaction between mosquito symbiotic bacteria and pathogens. Some symbiotic bacteria associated with Ae. aegypti have beenfound to inhibit dengue virus infection (Wilke and Marrelli, 2015), shortenmosquito lifespan (Wu et al. 2019), and affect the mosquito's life cycle (Coon et al. 2017). The role of symbiotic bacteria in inhibiting dengue infection highlights their potential as biocontrol agents against Ae. aegypti. Mapping the diversity of symbiotic bacteria helps identify the dominant symbiotic bacteria present in the midgut of Ae. aegypti and control the dengue vector. This can be achieved through in-silico analysis of symbiotic bacteria data in bioinformatics databases. Isolation and characterization of symbiotic bacteria can provide more accurate information for their expected biocontrol function.

In-silico analysis allows the mapping of symbiotic bacteria diversity without the need for conventional bacterial isolation methods. Mapping the diversity of living organisms can be achieved through taxonomic classification approaches using DNA barcoding in bioinformatics databases (Bennett et al. 2019; Scolari et al. 2019). This study employed an in-silico analysis to map the diversity of symbiotic bacteria in the midgut of Ae. aegypti, using 16S rDNA molecular markers available in the NCBI database (Table 1 and 2), which are commonly used for bacterial characterization. The insilico analysis of symbiotic bacteria from the midgut of Ae. aegypti supports the laboratory analysisresults regarding the exploration of symbiotic bacteria's potential as a new biocontrol agent against DHF vectors.

MATERIALS AND METHODS

Location and time

This research was conducted from August to December 2022 at theBiotechnology Laboratory, Biology Department, Faculty of Mathematics and Natural Sciences, University of Jember.

		Soquence Size	
Acc. Number	Spesies	Sequence Size	References
JN201949.1	Enterococcus faecalis strain Kiv	1520	Terenius et al. 2012
MT279442.1	Microbacterium sp. strain CEL3	1508	Rodrigo et al. 2020
JN201946.1	Bacillus sp. JL6	1507	Lindh et al. 2011
JN201947.1	Serratia marcescens strain Ki	1502	Terenius et al. 2012
JN201948.1	Klebsiella pneumoniae strain Kiii	1499	Terenius et al. 2012
MT279473.1	Terribacillus sp. strain LE11	1494	Rodrigo et al. 2020
MT279351.1	Lysinibacillus sphaericus strain CEA2	1492	Rodrigo et al. 2020
MT279353.1	Lysinibacillus sphaericus strain CEA3	1492	Rodrigo et al. 2020
JN201945.1	Burkholderiaceae bacterium JL4 16S	1491	Terenius et al. 2012
MT279459.1	Priestia flexa strain LE1	1490	Rodrigo et al. 2020
MT279460.1	Bacillus sp. (in: firmicutes) strain LE2 16S	1488	Rodrigo et al. 2020
MT279468.1	Priestia flexa strain LE9	1488	Rodrigo et al. 2020
MT279354.1	Lysinibacillus sphaericus strain CEA4	1487	Rodrigo et al. 2020
MT279464.1	Bacillus cereus strain LE6	1485	Rodrigo et al. 2020
MT279461.1	Niallia nealsonii strain LE3	1484	Rodrigo et al. 2020
MT279463.1	Bacillus sp. (in: firmicutes) strain LE5	1484	Rodrigo et al. 2020
MT279443.1	Bacillus cereus strain CEL4	1483	Rodrigo et al. 2020
MT279462.1	Lysinibacillus sphaericus strain LE4	1483	Rodrigo et al. 2020
MT279445.1	Lysinibacillus sphaericus strain CEL5	1482	Rodrigo et al. 2020
MT277413.1	Staphylococcus warneri strain AE2	1478	Rodrigo et al. 2020
JN201943.1	Elizabethkingia meningoseptica strain JL1	1476	Terenius et al. 2012
MT279350.1	Serratia liquefaciens strain CEA1	1475	Rodrigo et al. 2020
MT052362.1	Enterococcus gallinarum strain L2002	1474	Vivero et al. 2020
MT277424.1	Priestia endophytica strain AE4	1474	Rodrigo et al. 2020
MT279467.1	Acinetobacter sp. strain LE8	1473	Rodrigo et al. 2020
MT277091.1	Enterobacter sp. strain AE1	1472	Rodrigo et al. 2020
MT279465.1	Acinetobacter sp. strain LE7	1472	Rodrigo et al. 2020
MT540255.1	Acinetobacter nosocomialis strain AE6	1472	Rodrigo et al. 2020
MT540024.1	Pantoea dispersa strain AE5	1469	Rodrigo et al. 2020
MT279472.1	Acinetobacter sp. strain LE10	1466	Rodrigo et al. 2020
MT277412.1	Enterobacter sp. strain AE3	1458	Rodrigo et al. 2020
MT279356.1	Microbacterium paraoxydans strain CEL2	1455	Rodrigo et al. 2020
JN201944.1	Sphingomonas sp. JL3	1449	Lindh et al. 2012
MT052365.1	Bacillus aerius strain L2004	1420	Vivero et al. 2020
MT052367.1	Staphylococcus epidermidis strain L2007	1420	Vivero et al. 2020
MT052358.1	Bacillus safensis strain L4001	1415	Vivero et al. 2020
MT052366.1	Bacillus aerius strain L2005	1415	Vivero et al. 2020
KP717398.1	Bacillus cereus strain BAL34	1411	Yadav et al. 2015
KP717414.1	Lysinibacillus fusiformis strain BAE16	1409	Yadav et al. 2015
KP717400.1	Lysinibacillus fusiformis strain BAL 24	1408	Yadav et al. 2015
KP717401.1	Staphylococcus hominis strain BAL40	1408	Yadav et al. 2015
KP717412.1	Bacillus aryabhattai strain BAE14	1408	Yadav et al. 2015
MI052361.1	Enterobacter soli strain L2001	1408	Vivero et al. 2020
KP717397.1	Bacillus aryabhattai strain BAL 14	1407	Yadav et al. 2015
FJ372766.1	Serratia sp. 122	1403	Gusmao et al. 2010
MI052363.1	Serratia grimesii strain L4004	1403	Vivero et al. 2020
KP717413.1	Bacillus aerophilus strain BAE35	1402	Yadav et al. 2015
FJ3/2/67.1	Serratia sp. 123	1398	Gusmao et al. 2010
KP/1/403.1	Enterobacter cloacae strain BAE1	1397	Yadav et al. 2015
KP/1/403.1	Enteropacter cloacae strain BAE1	1397	radav et al. 2015

Table 1. 16S rDNA Sequences Collection of Culturable Bacteria from NCBI Database

		Sequence Size	
Acc. Number	Spesies	(hn)	References
KP717406.1	Klebsiella pneumoniae strain BAE25	1395	Yaday et al. 2015
KP717399 1	Bacillus tequilensis strain BAI 19	1392	Yaday et al. 2015
KP717399.1	Bacillus tequilensis strain BAL19	1392	Yadav et al. 2015
KP717392 1	Pseudomonas aeruginosa strain BAI 13	1387	Yaday et al. 2015
KP717411 1	Stenotrophomonas maltophilia strain	1386	Yaday et al. 2015
	BAF29	1000	
MT052364.1	Chryseobacterium oncorhynchi strain L2003	1386	Vivero et al. 2020
KP717396.1	Alcaligenes faecalis strain BAL33	1384	Yadav et al. 2015
KP717409.1	Pseudomonas mosselii strain BAE27	1384	Yadav et al. 2015
MT052359.1	Chryseobacterium oncorhynchi strain	1383	Vivero et al. 2020
	L4002		
KP717393.1	Pseudomonas monteilii strain BAL37	1381	Yadav et al. 2015
KP717388.1	Enterobacter hormaechei strain BAL26	1374	Yadav et al. 2015
KP717408.1	Pseudomonas monteilii strain BAE34	1381	Yadav et al. 2015
KP717388.1	Enterobacter hormaechei strain BAL26	1374	Yadav et al. 2015
KP717404.1	Enterobacter xiangfangensis strain BAE23	1374	Yadav et al. 2015
KP717391.1	Klebsiella michiganensis strain BAL29	1373	Yadav et al. 2015
KP717394.1	[Pseudomonas] geniculata strain BAL31	1372	Yadav et al. 2015
KP717395.1	Acinetobacter pittii strain BAL43	1367	Yadav et al. 2015
KP717416.1	Micrococcus yunnanensis strain BAE13	1356	Yadav et al. 2015
KP717402.1	Elizabethkingia anophelis strain BAL36	1355	Yadav et al. 2015
KP717389.1	Enterobacter asburiae strain BAL27	1352	Yadav et al. 2015
KP717415.1	Staphylococcus hominis strain BAE39	1351	Yadav et al. 2015
FJ372764.1	Serratia sp. 117	1343	Gusmao et al. 2010
KP717407.1	Pantoea dispersa strain BAE21	1343	Yadav et al. 2015
KP717387.1	Enterobacter cloacae strain BAL1	1340	Yadav et al. 2015
KP717405.1	Klebsiella michiganensis strain BAE24	1310	Yadav et al. 2015
FJ372768.1	Bacillus sp. l24	1301	Gusmao et al. 2010
KP717390.1	Klebsiella oxytoca strain BAL28	1283	Yadav et al. 2015
FJ372771.1	Bacillus sp. 128	1280	Gusmao et al. 2010
KP717410.1	Aeromonas veronii strain BAE28	1274	Yadav et al. 2015
FJ372772.1	Enterococcus sp. 134	1271	Gusmao et al. 2010
FJ372763.1	Klebsiella sp. 112	1245	Gusmao et al. 2010
MT277459.1	Acinetobacter baumannii strain AE7	1214	Rodrigo et al. 2020
DQ855292.1	Pantoea agglomerans strain AE10	1023	Apte-Deshpande and Deobagkar 2006
KU096887.1	Elizabethkingia sp. VV11	1022	David et al. 2016
DQ855290.1	Pseudomonas alcaligenes strain AE8	1021	Apte-Deshpande and Deobagkar 2006
DQ855287.1	Aeromonas salmonicida strain AE5	1016	Apte-Deshpande and Deobagkar 2006
KU096883.1	Elizabethkingia sp. VV3	1012	David et al. 2016
KU096886 1	Elizabethkingia sp. VV10	1012	David et al. 2016
DO855293 1	Edwardsjella tarda strain AF11	1011	Apte-Deshpande and
2 000200.1		1011	Deobaokar 2006
DQ855291.1	Burkholderia mallei strain AE9	1004	Apte-Deshpande and Deobagkar 2006
FJ372760.1	Klebsiella sp. 15	1004	Gusmao et al. 2010

Acc. Number	Spesies	Sequence Size	References
KU096884.1	Elizabethkingia sp. VV8	999	David et al. 2016
KU096906.1	Microbacterium sp. VV42	994	David et al. 2016
KU096893.1	Enterobacter sp. VV6	993	David et al. 2016
DQ855289.1	Aeromonas hydrophila strain AE7	992	Apte-Deshpande and
			Deobagkar 2006
KU096894.1	Enterobacter sp. VV	992	David et al. 2016
DQ855294.1	Brevibacillus agri strain AE12	991	Apte-Deshpande and
			Deobagkar 2006
KU096892.1	Enterobacter sp. VV5	990	David et al. 2016
DQ855295.1	Bacillus cereus strain AE13	983	Apte-Deshpande and
			Deobagkar 2006
KU096888.1	Elizabethkingia sp. VV59	982	David et al. 2016
KU096889.1	Elizabethkingia sp. VV60	982	David et al. 2016

Table 2. 16S rDNA Sequences Collection of Non-Culturable Bacteria from NCBI Database

Acc. Number	Spesies	Sequence Size (bp)	References
KF672364.1	Uncultured bacterium clone ss1	1545	Hill et al. 2014
HQ873693.1	Uncultured bacterium clone M97B	1156	Charan et al. 2011
HQ873696.1	Uncultured bacterium clone M03B	1144	Charan et al. 2011
HQ873682.1	Uncultured bacterium clone R48B	1135	Charan et al. 2011
HQ873679.1	Uncultured bacterium clone R101B	1131	Charan et al. 2011
HQ873680.1	Uncultured bacterium clone R03B	1125	Charan et al. 2011
HQ873691.1	Uncultured bacterium clone M78B	1122	Charan et al. 2011
HQ873688.1	Uncultured bacterium clone S56B	1116	Charan et al. 2011
HQ873681.1	Uncultured bacterium clone R90B	1112	Charan et al. 2011
HQ873695.1	Uncultured bacterium clone M40B	1103	Charan et al. 2011
HQ873687.1	Uncultured bacterium clone S37B	1035	Charan et al. 2011
KY041048.1	Uncultured bacterium clone 5BBF_4A_94	1007	Suryavanshi and Charan, 2017
KY041104.1	Uncultured bacterium clone 1BBF_3A_64	1007	Suryavanshi and Charan, 2017
HQ873689.1	Uncultured bacterium clone S48B	1000	Charan et al. 2011
KY040891.1	Uncultured bacterium clone HTC_0_29	989	Suryavanshi and Charan, 2017
KY040889.1	Uncultured bacterium clone HTC_0_19	988	Suryavanshi and Charan, 2017
KY040895.1	Uncultured bacterium clone HTC_0_56	986	Suryavanshi and Charan, 2017
KY040886.1	Uncultured bacterium clone HTC_0_11	984	Suryavanshi and Charan, 2017
KY040887.1	Uncultured bacterium clone HTC_0_15	982	Suryavanshi and Charan, 2017
KY040890.1	Uncultured bacterium clone HTC 0 22	981	Suryavanshi and Charan, 2017
KY040898.1	Uncultured bacterium clone HTC 0 81	980	Suryavanshi and Charan, 2017
KY040888.1	Uncultured bacterium clone HTC_0_18	977	Suryavanshi and Charan, 2017
KY040894.1	Uncultured bacterium clone HTC_0_43	977	Suryavanshi and Charan, 2017

		Sequence Size	
Acc. Number	Spesies	(bp)	References
HQ873685.1	Uncultured bacterium clone S69A	976	Charan et al. 2011
HQ873686.1	Uncultured bacterium clone S21A	976	Charan et al. 2011
HQ873683.1	Uncultured bacterium clone S47A	974	Charan et al. 2011
KY040901.1	Uncultured bacterium clone	970	Suryavanshi and
	HTC_0_86		Charan, 2017
KY041209.1	Uncultured bacterium clone	970	Suryavanshi and
	3ABF_6_34		Charan, 2017
HQ873684.1	Uncultured bacterium clone S46A	969	Charan et al. 2011
KY041254.1	Uncultured bacterium clone 3ABF_6_84	969	Charan et al. 2011
KY041269.1	Uncultured bacterium clone 5ABF_7_8	969	Suryavanshi and Charan, 2017
KY041369.1	Uncultured bacterium clone 7ABF 8A 42	969	Suryavanshi and Charan, 2017
KY041421.1	Uncultured bacterium clone	969	Survavanshi and
	7ABF_8B_42		Charan, 2017
KY041517.1	Uncultured bacterium clone 10ABF_A_96	969	Suryavanshi and Charan, 2017
KY041524.1	Uncultured bacterium clone	969	Suryavanshi and Charan, 2017
KY041527.1	Uncultured bacterium clone	969	Suryavanshi and Charan, 2017
KY041530.1	Uncultured bacterium clone	969	Suryavanshi and Charan, 2017
KY041197.1	Uncultured bacterium clone	968	Suryavanshi and
KY041353.1	Uncultured bacterium clone	968	Suryavanshi and Charan, 2017
KY041362.1	Uncultured bacterium clone	968	Suryavanshi and
KY041392.1	Uncultured bacterium clone	968	Suryavanshi and
KY041405.1	7ABF_8A_88 Uncultured bacterium clone	968	Charan, 2017 Suryavanshi and
KY041414.1	7ABF_8B_15 Uncultured bacterium clone	968	Charan, 2017 Suryavanshi and
	7ABF_8B_32		Charan, 2017
KYU41445.1	Uncultured bacterium clone 7ABF_8B_86	968	Charan, 2017
KY041325.1	Uncultured bacterium clone 5ABF_7_71	967	Suryavanshi and Charan, 2017
KY041063.1	Uncultured bacterium clone 5BBF 4B 20	966	Suryavanshi and Charan, 2017
KY041069.1	Uncultured bacterium clone 5BBF_4B_28	966	Suryavanshi and Charan, 2017
KY041114.1	Uncultured bacterium clone	966	Suryavanshi and Charan, 2017
KY041120.1	Uncultured bacterium clone	966	Suryavanshi and Charan, 2017
KY041232.1	Uncultured bacterium clone	966	Suryavanshi and
KY041382.1	Uncultured bacterium clone 7ABF 8A 68	966	Suryavanshi and Charan, 2017

Ass. Number	Creation	Sequence Size	Deferences
Acc. Number	Spesies	(bp)	References
KY041395.1	Uncultured bacterium clone 7ABF 8A 93	966	Suryavanshi and Charan, 2017
KY041435.1	Uncultured bacterium clone 7ABF 8B 66	966	Suryavanshi and Charan, 2017
KY041448.1	Uncultured bacterium clone 7ABF_8B_91	966	Suryavanshi and Charan, 2017
KY041479.1	Uncultured bacterium clone 10ABF_A_41	966	Suryavanshi and Charan, 2017
KY040900.1	Uncultured bacterium clone HTC 0 85	965	Suryavanshi and Charan, 2017
KY040939.1	Uncultured bacterium clone 7BBF_3A_40	965	Suryavanshi and Charan, 2017
KY041057.1	Uncultured bacterium clone 5BBF 4B 14	965	Suryavanshi and Charan, 2017
KY041196.1	Uncultured bacterium clone 3ABF 6 19	965	Suryavanshi and Charan, 2017
KY041351.1	Uncultured bacterium clone 7ABF 8A 13	965	Suryavanshi and Charan, 2017
KY041360.1	Uncultured bacterium clone 7ABF 8A 31	953	Suryavanshi and Charan, 2017
KY041370.1	Uncultured bacterium clone 7ABF 8A 44	965	Suryavanshi and Charan, 2017
KY041379.1	Uncultured bacterium clone 7ABF_8A_62	965	Suryavanshi and Charan, 2017
KY041384.1	Uncultured bacterium clone 7ABF_8A_73	965	Suryavanshi and Charan, 2017
KY041388.1	Uncultured bacterium clone 7ABF_8A_80	965	Suryavanshi and Charan, 2017
KY041403.1	Uncultured bacterium clone 7ABF_8B_10	965	Suryavanshi and Charan, 2017
KY041409.1	Uncultured bacterium clone 7ABF_8B_24	965	Suryavanshi and Charan, 2017
KY041422.1	Uncultured bacterium clone 7ABF_8B_44	965	Suryavanshi and Charan, 2017
KY041432.1	Uncultured bacterium clone 7ABF_8B_61	965	Suryavanshi and Charan, 2017
KY041437.1	Uncultured bacterium clone 7ABF_8B_70	965	Suryavanshi and Charan, 2017
KY041441.1	Uncultured bacterium clone 7ABF_8B_77	965	Suryavanshi and Charan, 2017
KC484895.1 KY040918.1	Uncultured bacterium clone Sam7A45 Uncultured bacterium clone	964 964	Charan et al. 2013 Suryavanshi and
KY041058.1	7BBF_3A_17 Uncultured bacterium clone	964	Charan, 2017 Suryavanshi and
KY041304.1	Uncultured bacterium clone	964	Suryavanshi and Charan 2017
KY041337.1	Uncultured bacterium clone	964	Suryavanshi and Charan, 2017
KY041339.1	Uncultured bacterium clone 5ABF_7_90	964	Suryavanshi and Charan, 2017

Acc. Number	Spesies	Sequence Size	References
KY041356.1	Uncultured bacterium clone	964	Survavanshi and
	7ABF_8A_24		Charan, 2017
KY041408.1	Uncultured bacterium clone	964	Suryavanshi and
	7ABF_8B_22		Charan, 2017
KY041497.1	Uncultured bacterium clone	964	Suryavanshi and
	10ABF_A_64		Charan, 2017
KY041507.1	Uncultured bacterium clone	964	Suryavanshi and
	10ABF_A_76		Charan, 2017
KY040905.1	Uncultured bacterium clone	963	Suryavanshi and
	7BBF_3A_4		Charan, 2017
KY040986.1	Uncultured bacterium clone	963	Suryavanshi and
	5BBF_4A_3		Charan, 2017
KY041013.1	Uncultured bacterium clone	963	Suryavanshi and
	5BBF_4A_32		Charan, 2017
KY041027.1	Uncultured bacterium clone	963	Suryavanshi and
	5BBF_4A_53		Charan, 2017
KY041035.1	Uncultured bacterium clone	963	Suryavanshi and
	5BBF_4A_65		Charan, 2017
KY041055.1	Uncultured bacterium clone	963	Suryavanshi and
	5BBF_4B_11		Charan, 2017
KY041060.1	Uncultured bacterium clone	963	Suryavanshi and
	5BBF_4B_17		Charan, 2017
KY041074.1	Uncultured bacterium clone	963	Suryavanshi and
	1BBF_3A_3		Charan, 2017
KY041098.1	Uncultured bacterium clone	963	Suryavanshi and
	1BBF_3A_55		Charan, 2017
KY041111.1	Uncultured bacterium clone	963	Suryavanshi and
	1BBF_3A_77		Charan, 2017
KY041180.1	Uncultured bacterium clone	963	Suryavanshi and
	3ABF_6_3		Charan, 2017
KY041224.1	Uncultured bacterium clone	963	Suryavanshi and
	3ABF_6_49		Charan, 2017
KY041229.1	Uncultured bacterium clone	963	Suryavanshi and
	3ABF_6_54		Charan, 2017
KY041249.1	Uncultured bacterium clone	963	Suryavanshi and
	3ABF_6_78		Charan, 2017
KY041330.1	Uncultured bacterium clone	963	Suryavanshi and
	5ABF_7_77		Charan, 2017
KY041371.1	Uncultured bacterium clone	963	Suryavanshi and
	7ABF_8A_48		Charan, 2017
KY041373.1	Uncultured bacterium clone	963	Suryavanshi and
	7ABF_8A_50		Charan, 2017
KY041375.1	Uncultured bacterium clone	963	Suryavanshi and
	7ABF_8A_57		Charan, 2017
KY041386.1	Uncultured bacterium clone	963	Suryavanshi and
	7ABF_8A_75		Charan, 2017

Materials and equipment

This research utilized both hardware and software. The hardware used was an ASUS FHD352 Laptop with an Intel Core i3-1005G1 3.4 GHz processor, 4GB DDR4 RAM, 512GB SSD, and NVIDIA Ge-Force MX330. The software used was Notepad for saving the sequence file. Bioin-

formatics databases provided by the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) and Pathosystems Resource Integration Center (PATRIC) (https://patricbrc.org/) were also involved. The materials used in this study were bacterial 16S rDNA sequence data from *Ae. aegypti* midgut obtained from the NCBI database.

Research methods

The research method in this study can be seen in the Figure 1. The detailed research procedure is described as follow:

Figure 1. Research procedure for in-silico analysis of symbiont bacteria diversity from the midgut of Aedes aegypti based on 16S rDNA molecular markers database

16S rDNA sequence collection

Initially, 16S rDNA sequences for this study were obtained from the NCBI database. The data were collected using the keyword "bacteria midgut *Aedes aegypti* 16S rDNA." The collect-ed 16S rDNA sequences were saved in a notepad file.

Selected sequence compilation

The 16S rDNA sequences collected from the *Ae. aegypti* midgut in the NCBI database were compiled into a single notepad file with a .txt format (Garg et al. 2016). This data was then converted into. fasta format forfurther analysis.

Krona construction and visualization

Krona construction was performed using PATRIC, a bioinformatics information center for bacterial data, established by the National Institute of Allergy and Infectious Diseases (NIAID). PATRIC provided gene sequence data and analysis for studying pathogens. This website tool can be used to perform bioinformatics analysis, such as microbial community abundance based on an in-silico approach (Wattam et al. 2017). The analysis was performed on the 16S rDNA sequence data from the Ae. aegypti midgut accessed through PATRIC. The analysis was con-ducted using the Kraken 2 Algorithm. The results of the analysis were presented in a pie chart called Krona, which visualizes the metagenomic composition of the microbe (Gaio et al. 2021). Krona is an interactive metagenomic visualization platform that allows exploration of bacterial abundance data through metagenomic classification hierarchies. Additionally, Krona provides the composition of bacterial taxa based on sequence data in the bioinformatics database, reporting the percentage of bacterial taxa by referring to the NCBI database.

Analysis of microbial abundance

Krona displayed a pie chart of taxa in various regions with specific hierarchies. Thedata display consisted of circles with different color gradations to signify different hierarchies and microbial abundance (Ondov et al. 2011). The inner circle represented the highest taxonomic hierarchy, while the outer circle represented taxa at lower hierarchies. Different colors were used to indicate variousbacterial taxa, and the abundance of each bacterium was represented by the percentage of metagenomic data obtained from the bioinformatics database.

RESULTS

The collection of 16S rDNA sequence

16S rDNA sequence data was gatheredfrom the NCBI, a comprehensive openaccessbioinformatics database known for its substantial collection of nucleotide sequences(Sayers et al. 2021). A collection of 16S rDNA sequences was obtained using the query "bacteria midgut Aedes aegypti 16S rDNA" with a lengthy filter to identify the longest sequence results. This approach aimed to obtain data that is close to full length in the 16S rDNA sequence region. The intact 16S rDNA sequence is approximately 1600 base pairs (bp) long, encompassing ninehypervariable regions (V1–V9). The 16S rDNA molecular marker is commonly used for bacterial characterization due to its conservation and universality among prokaryotic organisms, including bacteria andarchaea. The universality of this marker is observed in numerous prokaryotes. The analysis revealed a distinct and conserved hyper-variable region consisting of nine regions within the 16S rDNA seguence, which remained intact across prokaryotic generations(Santos et al. 2020).

Clustering bacterial diversity

Bacterial diversity was clustered using PATRIC, and taxonomic classification was applied to group sequence data based on kinship. Taxa refer to metagenomic data. This analysis employed the Kraken 2 algorithm to identify k-mers as indicators of taxonomic units (Davis et al. 2020). The top 100 data sequences were retrieved from NCBI, prioritizing those with the most complete nucleotide count, considering the 16S rDNA molecular marker with a total length of 1600 bp (Santos et al. 2020). The research estimated that sequences closer to theoptimal size would yield higher-quality results. The clustering process led to the classificationof culturable and non-culturable bacteria.

Culturable bacteria

The collection of culturable bacteria documented the 100 longest sequences from the NCBI database. The classification of culturable bacteria revealed that the most dominant phylum was Protobacteria, accounting for 62% of the total Krona. This phylum is represented by red areas. The nextdominant phylum was the Terrabacteria clad group, comprising 29% of all Krona and appearing as green areas. The blue areas corresponded to FCB bacterial taxa or the phylum Sphingobacteria, with an abundance of 9% (Figure 2). Within the Protobacteria phylum, the Class Gammaproteobacteriashowed the highest abundance at 57% (Figure 2b). This class was further divided into orders, namely Enterobacterales and Pseudomonadales. Enterobacterales was themost abundant order identified, accounting for37% of the total class (Figure 3a). The order Enterobacterales consists of the family Enterobacteriaceae, known for its highest abundance at 35% (Figure 3b). The most dominant genus and species were Salmonella and Salmonella enterica, representing 17% of the entire class (Figure 4a and 4b).

Figure 2. Krona of symbiont bacteria from *Ae. aegypti* midgut within culturable bacteria at the level of: a. Phylum; b. Class

Figure 3. Krona of symbiont bacteria from *Ae. aegypti* midgut within culturable bacteria at the level of: a. Ordo; b.Famili

Figure 4. Krona of symbiont bacteria from *Ae. aegypti* midgut within culturable bacteria at the level of: a. Genus; b. Species

Non-culturable bacteria

The sequence data used to identify non-culturable bacteria consisted of the 100 longest sequences obtained from the NCBI database. All sequences were recorded in a notepad file and converted to. fasta format. The analysis results were visualized using Krona. Among the Krona categories, the most dominant phylum was Protobacteria, accounting for 88% of the total Krona and marked by red areas. The Terrabacteria clad group, marked by green areas, was the sec- ond most abundant bacteria, representing 9% of the total Krona. The taxon FCB group or Sphin-gobacteria, indicated by the blue area, had an abundance of 2%. The phylum Verrucomicrobia, marked by the purple area, was the least abundant, comprising 1% of the total Krona (Figure 5a). Within the Protobacteria phylum, the class Gammaproteobacteria exhibited the highest abundance at 71% (Figure 5b). This class was further divided into two orders: Enterobacterales and Pseudomonadales. Among these, Enterobacterales was the mostcommon order, account-ing for 37% of the total (Figure 6a). The order Enterobacterales included the family Enterobacte-riaceae, which had the highest abundance of 35% (Figure 6b). The dominant taxa at the genus and species levels were Salmonella and Salmonella enterica, respectively, with abundances of 17% each (Figure 7a and 7b).

Figure 5. Krona of symbiont bacteria from *Ae. aegypti* midgut within non-culturable bacteria at the level of: a. Phylum; b. Clas

Figure 6. Krona of symbiont bacteria from *Ae. aegypti* midgut within non-culturable bacteria at the level of: a. Ordo;b. Famili

Figure 7. Krona of symbiont bacteria from *Ae. aegypti* midgut within non-culturable bacteria at the level of: a. Genus; b. Species

DISCUSSION

The analysis revealed that the database primarily consisted of taxa from the phylum Proteobacteria. The majority of Proteobacteria taxa were found in the midgut of Ae. aegypti (Kozlova et al. 2021). Krona categorization of culturable bacteria identified differences in the taxa, including the presence of the order Flavobacteriales and genus Elizabethkingia, which were only found in culturable bacteria. These bacteria were predominantly present in laboratoryreared mosquitoes. Variationswere also observed in the families of taxa between culturable and non-culturable bacteria. For example, the Bacilli class accounted for 6% of the total taxa in non- culturable bacteria, while it comprised 26% of the taxa in culturable bacteria. Krona analysis further demonstrated differences in the diversity of symbiont bacteria in the mosquito midgut, influenced by factors such as species, sex, habitat, and food sources (Terenius et al. 2012). Food sources, particularly sugar or blood, playeda role in shaping the abundance and diversity of symbiont bacteria in the midgut. Sugar-rich diets, high in carbohydrates, and blood meals, rich in proteins, created different environmental conditions in the midgut of different mosquitoes, resulting in distinct taxa profiles (Wu et al. 2019). Additionally, variations in blood sources based on different blood types affected the abundanceand diversity of bacterial taxa, such as Pseudomonas and Serratia, which were more abundant in mosquitoes feeding on human blood compared to other mammalian blood sources (Sarma et al. 2022).

The composition of symbiont bacteria is influenced not only by the vector itself but also by the characteristics of the symbiont bacteria. Enterobacterales and Serratia were the most commonly found taxa in the mosquito midgut. The population of the Enterobacterales and Serratia genera tended to increase when mosquitoes fed on blood, possibly due to these bacteria'sability to withstand oxidative stress in theblood meal (Wang et al. 2011). Bacterial activity, particularly antagonisticinteractions, also played a role in shaping the bacterial communities. For example, Cedecea bacteria inhibited Serratia, while Serratia infections inhibited Asia infections in mosquito bodies (Kozlova et al. 2021).

The genera of symbiont bacteria knownto influence the mosquito's life cycle belong to the phylum Proteobacteria, class Gammaproteobacteria, and order Enterobacterales. Based on Krona visualization, the most abundant bacterial taxain both culturable and non-culturable bacteriaincluded Serratia, Enterobacter, and Escherichia. However, bacterial taxa not belonging to the order Enterobacterales, suchas Wolbachia, Proteus, and Chromobacterium, were also identified. Some of these symbiontbacteria taxa were capable of influencing the transmission of pathogens in mosquitoes. Forinstance, Serratia marcescens inhibitedmosguito development by secretingSmEnhancin protein, rendering Ae. aegypti more susceptible to DENV infection. Serratia odorifera increased the susceptility of Ae.aegypti to DENV-2 (Apte-Deshpande et al. 2012). Wolbachia strain Wmel blocked mosquitoborne viruses like DENV, Chikungunya, Zika, and yellow fever, and reduced mosquito lifespan (Gao et al. 2020). Wolbachia strain wAlbB increased ROS production, triggering one of the mosquito's immune response pathways and reducing DENV infection (Pan et al. 2012). Chromobacterium secreted AMP compounds, which degraded DENV protein and preventedDENV infection (Saraiva et al. 2018). Proteussp. was known to enhance resistance to DENVby regulating AMP (Wu et al. 2019). Several bacterial species played important roles in transmitting DHF by affecting Ae. aegypti as the DHF vector, as shown in Table 3.

The analysis results documented multiple symbiont bacteria in the mosquito midgut capable of influencing Ae. aegypti's ability as a DENV vector. Wolbachia bacteria demonstrated the strongest potential for blocking arbovirus transmission, increasing susceptibility to DENV, increasing ROS and AMP secretion, and acting as biocontrol agents to control Ae. aegypti in Indonesia (Apte-Deshpande et al. 2012, Gao et al. 2020, Tantowijoyo et al. 2020). Another symbiotic bacterium in the midgut of Ae. aegypti with promising potential is the genus Serratia, known for its roles in vector control (Gao et al. 2020). Serratia belongs to the order Enterobacterales and although it may not be the most abundant species, it has the highest abundance among other orders. The analysis acknowledged *Escherichia coli* and *Salmonella enterica* as the two most abundant species within this order. *Escherichia coli* and *Salmonella enterica* are also bacterial species that belong to the predominant taxa in the orderEnterobacterales.

Table 3. The Species	, Potentials and Roles o	f Symbiont Bacteria
----------------------	--------------------------	---------------------

Spesies	Potentials and Roles	References
Serratia odorifera	enhancing mosquito vulnerability to DENV-2 infection	Wang et al. 2011
S. marcescens	producing SmEnhancin protein	Pan et al. 2012
<i>Wolbachia</i> wAlbB	triggering the production of ROS	Apte-Deshpande et al. 2012
Wolbachia Wmel	reducing the life span of a mosquito	Coon et al. 2017
<i>Serratia</i> spp. and <i>Enterobacter</i> sp.	maintaining hemolytic activity to facilitate blood feeding	Saraiva et al. 2018
Escherichia coli	Influencing the development of mosquitoes during the larval phase	Wu et al. 2019
Chromobacterium	secreting secondary metabolites that inhibit DENV Infection	Gao et al. 2020

CONCLUSION

The analysis of 16S rDNA data, incorporating both culturable and non- culturable bacteria, was facilitated by Krona for data presentation. The results reveal that the midgut of Ae. aegypti exhibits similar dominant taxa abundance at the phylum to family levels, albeit with varying percentage values. The dominant taxa identified in this study include Proteobacteria, Gammaproteobacteria, Enterobacterales, and Enterobacteriaceae, among others, at the levels of phylum, class, order, and family, respectively. Notably, within the category of culturable bacteria, the dominant taxa are observed at the genus level, specifically Salmonella, with Salmonella enterica being the most prevalent species. Conversely, in the category of non-culturable bacteria, the dominant taxa at the genus level are Escherichia, with Escherichia coli being the prevailing species. Serratia, belonging to the order Enterobacterales, demonstrates the most promising potential in controlling Ae. aegypti, despite not being the most dominantspecies.

ACKNOWLEDGMENT

This research was financially supported by LP2M - Universitas Jember

through the "Hibah Reworking Skripsi No. 6395/UN25.3.1/LT/2022" grant.

REFERENCES

- Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLOS ONE 7:e40401. doi: 10.1371/journal.pone.0040401
- Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR,Loaiza JR (2019) Dynamics and diversity of bacteria associated with thedisease vectors Aedes aegypti and Aedes albopictus. Sci Rep 9:12160. doi: 10.1038/s41598-019-48414-8
- Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR, Strand MR (2017) Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc Natl Acad Sci USA 114:E5362– E5369. doi:

10.1073/pnas.1702983114

Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, ConradN, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V,Warren AS, Xia F, Xie D, Yoo H, Stevens R (2020) The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606– D612. doi: 10.1093/nar/gkz943

- Gaio D, DeMaere MZ, Anantanawat K,Eamens GJ, Liu M, Zingali T, Falconer L, Chapman TA, Djordjevic SP, Darling AE (2021) A large-scale metagenomic survey dataset of the post-weaning piglet gut lumen. GigaScience 10:giab039. doi: 10.1093/gigascience/giab039
- Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S (2020) Mosquito microbiota and implications for disease control. Trends Parasitol 36:98–111. doi: 10.1016/j.pt.2019.12.001
- Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK (2016) MFPPI – Multi FASTA
- ProtParam Interface. Bioinformation 12:74– 77. doi: 10.6026/97320630012074
- Harapan H, Michie A, Sasmono RT, Imrie A (2020) Dengue: A Minireview. Viruses 12:829. doi: 10.3390/v12080829
- Kementerian Kesehatan Republik In-donesia (KemenKes RI). 2022. Profil Kesehatan Indonesia 2021. Jakarta: Kementerian Kesehatan Republik Indonesia
- Koh C, Allen SL, Herbert RI, McGraw EA, Chenoweth SF (2018) The transcriptional response of Aedesaegypti with variable extrinsic incubationperiods for dengue virus. Genome Biol Evol 10:3141–3151. doi 10.1093/gbe/evy230
- Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL (2021) Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME J 15:93–108. doi: 10.1038/s41396-020-00763-3

- Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S (2018) Mosquito innate immunity. Insects 9:95. doi: 10.3390/insects9030095
- Lee W-S, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ (2019) Mosquito antiviral defense mechanisms:a delicate balance between innate immunity and persistent viral infection. Parasites & Vectors 12:165. doi: 10.1186/s13071-019-3433-8
- Malassigné S, Valiente Moro C, Luis P (2020) Mosquito Mycobiota: An overview of non-entomopathogenicfungal interactions. Pathogens 9:564. doi: 10.3390/pathogens9070564
- Mapder T, Aaskov J, Burrage K (2020) Administration of defective virus inhibits dengue transmission into mosquitoes. Viruses 12:558. doi: 10.3390/v12050558
- Nouzova M, Clifton ME, Noriega FG (2019) Mosquito adaptations to hematophagia impact pathogen transmission. Curr Opin Insect Sci 34:21–26. doi: 10.1016/j.cois.2019.02.002
- Ondov BD, Bergman NH, Phillippy AM (2011)Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385. doi: 10.1186/1471-2105-12-385
- Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 109: E23–E31. doi: 10.1073/pnas.1116932108
- Santos A, van Aerle R, Barrientos L, Martinez-Urtaza J (2020) Computational methods for 16S metabarcoding studies using Nanoporesequencing data. Comput Struct Biotechnol J 18:296– 305. doi: 10.1016/j.csbj.2020.01.005
- Saraiva RG, Fang J, Kang S, Angleró-Rodríguez YI, Dong Y, Dimopoulos G (2018) Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLOS Negl Trop Dis 12:e0006443. doi: 10.1371/journal.pntd.0006443

- Sarma DK, Kumar M, Dhurve J, Pal N, Sharma P, James MM, Das D, Mishra S, Shubham S, Kumawat M, Verma V, Tiwari RR, Nagpal R, Marotta F (2022) Influence of host blood meal source on gut microbiota of wild caught Aedes aegypti, a dominant arboviral disease vector. Microorganisms 10:332. doi: 10.3390/microorganisms10020332
- Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Schoch CL, Sherry ST, Karsch-Mizrachi I (2021) GenBank. Nucleic Acids Res 49:D92–D96. doi: 10.1093/nar/gkaa1023
- Scolari F, Casiraghi M, Bonizzoni M (2019) Aedes spp. and their microbiota: A Review. Front Microbiol 10:2036. doi: 10.3389/fmicb.2019.02036
- Simões ML, Caragata EP, Dimopoulos G (2018) Diverse host and restriction factors regulate mosquito–pathogen interactions. Trends Parasitol 34:603– 616. doi: 10.1016/j.pt.2018.04.011
- Sun B, Zhang X, Zhang H, Liu H, Sun L, Tan Q, Liang M, Wu D, Liu D (2020) Genomic epidemiologicalcharacteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLOS Negl Trop Dis 14:e0008049. doi: 10.1371/journal.pntd.0008049
- Tantowijoyo W, Andari B, Arguni E, Budiwati N, Nurhayati I, Fitriana I, Ernesia I, Daniwijaya EW, Supriyati E, Yusdiana DH, Victorius M, Wardana DS, Ardiansyah H, Ahmad RA, Ryan PA, Simmons CP, Hoffmann AA, Rancès E, Turley AP, Johnson P, Utarini A, O'Neill SL (2020) Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLOS Negl Trop Dis 14:e0008157. doi: 10.1371/journal.pntd.0008157

- Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I (2012) Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol 80:556–565. doi: 10.1111/j.1574-6941.2012.01317.x
- Wang Y, Gilbreath III TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLOS ONE 6:e24767. doi: 10.1371/journal.pone.0024767
- Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-OlsonDE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic AcidsRes 45:D535–D542. doi: 10.1093/nar/gkw1017
- Wilke ABB, Marrelli MT (2015) Paratransgenesis: a promising new strategy for mosquito vector control. Parasites & Vectors 8:342. doi: 10.1186/s13071-015-0959-2
- Wu P, Yu X, Wang P, Cheng G (2019) Arbovirus lifecycle in mosquito: acquisition, propagation and transmission.
 Expert Rev Mol Med 21:e1. doi: 10.1017/erm.2018.6
- Zhang L, Wang S-M (2020) A time-periodic and reaction–diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Analysis: Real World Applications 51:102988. doi:

10.1016/j.nonrwa.2019.1029