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ABSTRACT 

Cancer remains one of the deadliest diseases worldwide, and currently cancer treatment 

is facing several problems related to adverse effects and drug resistance. To address 

these problems, new prospective anticancer medications are required. Natural com-

pounds, which have been extensively used in the drug research, including for the treat-

ment of cancer, are emerging as viable candidates. This study aimed to evaluate 33 in-

house natural compounds against dihydroorotate dehydrogenase (DHODH) enzyme, a 

viable target to develop anticancer agent, and to analyze the hit inhibitory mechanism 

against protein target. In the activity assay, atovaquone was the sole substance to have 

activity against DHODH, with an inhibition rate of 47.44% at 10 µM. However, discrep-

ancies were shown in the molecular docking result, where atovaquone were identified 

as hits. Molecular dynamic analysis revealed that atovaquone initially bound to the active 

site before being forced to the outside due to cleavage of hydrogen bond between the 

ligand and responsible residue. This study clearly demonstrated the importance of mo-

lecular dynamic analysis to study inhibitory mechanism of compound against target pro-

tein that may be useful for further development.  

 

Keywords: Anticancer, Drug discovery, Dihydroorotate dehydrogenase, Molecular 

docking, Molecular dynamic 

 

ABSTRAK 

Kanker menjadi salah satu penyakit paling mematikan di dunia, dan saat ini penanganan 

kanker menghadapi beberapa masalah terkait efek samping pengobatan dan resistensi 

obat. Untuk mengatasi masalah ini, diperlukan obat antikanker yang baru. Senyawa 

alami, yang telah banyak digunakan dalam penelitian obat, termasuk untuk pengobatan 

kanker, muncul sebagai kandidat yang potensial. Penelitian ini bertujuan untuk menguji 

33 senyawa alami yang telah diketahui aktivitasnya terhadap enzim dihidroorotat dehi-

drogenase (DHODH), target yang potensial untuk mengembangkan anti-kanker, dan un-

tuk menganalisa mekanisme penghambatan senyawa terhadap target protein. Dalam uji 

aktivitas, atovaquone adalah satu-satunya senyawa yang memiliki aktivitas terhadap 

DHODH, dengan tingkat penghambatan 47.44% pada konsentrasi 10 µM. Namun, 

perbedaan ditunjukkan dalam hasil doking molekuler, di mana atovaquone diidentifikasi 

sebagai hit. Analisis dinamika molekular mengungkapkan bahwa di awal atovaquone 
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berikatan dengan situs aktif sebelum terdorong ke luar karena terputusnya ikatan hidro-

gen antara ligan dan residu yang bertanggung jawab. Studi ini secara jelas mendemon-

strasikan pentingnya analisis dinamika molekular untuk mempelajari mekanisme peng-

hambatan senyawa terhadap protein target yang mungkin berguna untuk pengem-

bangan lebih lanjut. 

 

Kata kunci: Anti-kanker, Penemuan obat, Dihidroorotat dehydrogenase manusia, 

Doking molekular, Dinamika molekular  

 

INTRODUCTION 

 

Cancer is one of the leading causes of 

death in the world. Cancer is a type of dis-

ease that manifests as abnormal cell growth 

in any organ or tissue, which spreads to sur-

rounding body parts and/or other organs af-

ter crossing normal cell-boundaries (World 

Health Organization 2022). In 2020, an esti-

mated 19.3 million new cases of cancer and 

roughly 10 million cancer-related deaths 

were reported. Female breast and lung can-

cers dominated new cancer cases, with an 

estimation of 2.3 million (11.7%) and 2.2 mil-

lion (11.4%) cases, respectively, while lung 

(18%) and colorectal (9,4%) cancers were 

the two most common causes of cancer 

death. In addition, the global cancer burden 

is expected to be 28.4 million cases in 2040, 

a 47% rise from 2020 (Sung et al. 2021). 

The foundation of many cancer treat-

ments today, regardless of the disease's 

stage, continues to be chemotherapy. This 

is despite the development of many other 

cancer treatment methods in recent years 

(Alfarouk et al. 2015). Chemotherapy is a 

pharmacological treatment that uses potent 

drugs to stop cancer cells from proliferating, 

dividing, and producing new cells. A number 

of malignancies can be treated with chemo-

therapy medications either alone or in com-

bination (Cancer.Net 2022). Although it is an 

effective method for treating various can-

cers, chemotherapy has many issues re-

lated to its side effects and multidrug re-

sistance (MDR). Toxicity in chemotherapy is 

affected by the selectivity and specificity 

problem of anticancer agents when target-

ing cancer tissue. Meanwhile the drug-re-

sistance has also become a significant bar-

rier limiting the therapeutic efficacy of 

chemotherapeutic drugs, which enables 

cancer to withstand chemotherapy (Dong 

and Mumper 2010; Alfarouk et al. 

2015).Based on those problems above, it is 

critically necessary to find novel anticancer 

substances with improved cytotoxicity and 

activity for possible intervention. Dihy-

droorotate dehydrogenase (DHODH) has 

been widely used as a chemotherapeutic 

target for cancer. DHODH is a mitochondrial 

enzyme that is essential in the de novo py-

rimidine biosynthesis pathway. This enzyme 

is an oxidoreductase that catalyzes two re-

dox reaction, the conversion of dihydrooro-

tate (DHO) to orotate (ORO), and the regen-

eration of flavin mononucleotide (FMN) 

(Reis et al. 2017; Madak et al. 2019). These 

pathways have a direct correlation to the 

cancer cell growth by producing the funda-

mental and essential substrate for DNA rep-

lication and protein synthesis during prolifer-

ation of the cancer cells (Evans and Guy 

2004; Wang et al. 2021). In addition, inhibi-

tion of this target is also crucial for cell res-

piration due to ATP depletion and resulting 

in inhibition of cell proliferation (Mohamad 

Fairus et al. 2017). Extensive studies had 

been performed by focusing on blocking this 

target in order to develop drugs for various 

cancer, including small cell lung cancer (Li 

et al. 2019), breast cancer (Mohamad Fairus 

et al. 2017), bladder cancer (Cheng et al. 

2020), colorectal cancer (Yamaguchi et al. 

2019), and acute myeloid leukemia (Wu et 

al. 2018). Several substances have been 

found to be DHODH inhibitors to date; some 

of these are even presently undergoing clin-

ical trials or have received FDA approval. 

These include brequinar (Maroun et al. 

1993), leflunomide (Fragoso and Brooks 

2015), BAY 2402234 (Christian et al. 2019), 

PTC299 (Cao et al. 2019), and ASLAN003 

(Zhou et al. 2020). 

Numerous compounds isolated from 

various natural resources demonstrated 

enormous anticancer activity, according to 

several research, such as microbes (Li et al. 
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2018; Ōmura et al. 2018), plants (He et al. 

2018; Wu et al. 2018), marine organisms 

(Ahn et al. 2019; Shubina et al. 2019), and 

mangrove (Chen et al. 2018; Law et al. 

2019). Those nature-derived compounds 

can operate as key building blocks for the 

creation of chemotherapeutic drugs due to 

their impressive structural variety and bioac-

tive qualities (Pham et al. 2019). Moreover, 

several studies had revealed the potency of 

natural products for DHODH inhibitor. Wu et 

al. (2018) had specifically found iso-

bavachalcone, a compound derived from 

traditional Chinese medicinal plant Psoralea 

corylifolia, which inhibits DHODH directly 

and triggers apoptosis of acute myeloid 

leukimia cells. Liu et al. (2020) also showed 

that piperine, isolated from black pepper, 

controlled T cell activation by pharmacolog-

ically inhibiting DHODH and preventing the 

synthesis of pyrimidines. In addition, an-

other research has revealed a new com-

pound originating from microbes that are ca-

pable of competitively inhibiting DHODH. 

Ascochlorin, a metabolite produced by fun-

gus Ascochyta viciae,  demonstrated signif-

icant immunosuppressive and anti-inflam-

matory properties both in vivo and in vitro via 

reversible DHODH inhibition (Shen et al. 

2016). These emphasize the importance of 

natural compounds as source for anti-can-

cer drug discovery. 

To explore more the potential of natu-

ral compounds as anticancer agent, particu-

larly as inhibitor of DHODH activity, in this 

study, we assessed inhibitory activity of our 

in-house natural compound library against 

DHODH. The library composed from 33 nat-

ural compounds that showed various bioac-

tivities, including anti-fungal, anti-tumor, 

anti-parasite, anti-inflamatory, anti-oxidant, 

etc. We also represented the in-silico stud-

ies to reveal protein-ligand interaction, bio-

activity and pharmakokinetic properties of 

the hit. Moreover, the inhibitory mechanisms 

of the hits against protein target were pre-

dicted by using molecular dynamic simula-

tion. Structurally important moiety of the 

compound that highly involved in inhibitory 

mechanism will also be discussed. 

 

MATERIAL AND METHODS 

 

Location and time 

This study was conducted in Juni – 

November 2022 at the Biotechnology Labor-

atory, the National Research and Innovation 

Agency (BRIN), BJ Habibie Science and 

Technology Park, South Tangerang, Ban-

ten, Indonesia. 

 

DHODH Inhibitory Activity Assay 

DHODH recombinant enzyme was 

prepared as previously described (Inaoka et 

al. 2016). Each tested 33 in-house natural 

compound (Table 1) was added to 96-well 

plate containing 190 µL assay mix (100 mM 

HEPES pH 8, 150 mM NaCl, 10% (v/v) glyc-

erol, 0.05% (w/v) triton X, 12 mM 2,6-di-

chloroindophenol (DCIP), 200 nM 

decylubiquinone, 20 nM DHODH recombi-

nant enzyme) so the final concentration was 

10 µM, then homogenized by shaking at 

500-750 rpm for 30 s. Absorbance of mix so-

lution was recorded at 600 nm, 25˚C for 1 

min in kinetic mode by a multiplate reader 

(Spectramax Paradigm, Molecular Devices, 

USA). Substrate L-DHO (dihydroorotate) 

was subsequently added to the mix solution 

(final concentration was 0.2 mM) then ho-

mogenized by shaking at 500-750 rpm for 

30 s. Absorbance of the mix solution was 

read in a kinetic mode at 600 nm, 25oC. The 

inhibition activity was calculated as follows:

 

 

%𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 100 −  
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 (𝐴600)𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 −  𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 (𝐴600)𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 (𝐴600)𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙
 

 

Mix solution without addition of L-DHO 

and sample (replaced by water and DMSO, 

respectively) was regarded as positive con-

trol, while mix solution without sample (re-

placed by DMSO) was regarded as negative 

control. 

 

Molecular Docking Simulation 

The 3D X-ray diffraction structure of 

DHODH (PDB ID: 2FPY) were obtained 

from RCSB Protein Data Bank 

(https://www.rcsb.org/) (Burley et al. 2021). 

The quality of the protein structure were  
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examined using the Ramachandran plot us-

ing the Procheck tool 

(https://saves.mbi.ucla.edu/) (Laskowski et 

al. 1996). Subsequently, the protein crystal 

structure was prepared using UCSF Chi-

mera v.1.16. Native inhibitor (3-({[3,5-

difluoro-3'-(trifluoromethoxy)Biphenyl-4-

Yl]amino}carbonyl)thiophene-2-carboxylic 

acid) were separated from the receptor and 

prepared using UCSF Chimera v.1.16 (Butt 

et al. 2020). Meanwhile, hit compound from 

activity assay was obtained from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) (Kim et 

al. 2018) and was saved in 3D SDF format. 

Native inhibitor and hit compound were then 

merged into one file using Open Babel 

v.2.3.1 (Tran-Nguyen et al. 2022). 

Validation of binding site was per-

formed by re-docking of native ligand to the 

target protein using AutoDock Vina (Fradera 

and Babaoglu 2017) algorithm that was 

compiled in PyRx v.0.8 (Dallakyan and 

Olson 2015) in 20 replications. Vina Search 

Space (Centre X-Y-Z and Size/Dimensions 

X-Y-Z) was determined using amino acid 

residues that form the ubiquinone binding 

site as the basis, where the docking process 

will be carried out. Incorporation of these 

amino acid residues in the binding site was 

determined according to previous reports 

(Baumgartner et al. 2006; Miyazaki et al. 

2018). The result were then analyzed using 

PyMOL v.2.5.2 Edu (Schrödinger, USA) and 

Ligplot+ v.2.2.5 (Verma et al. 2014). Perfor-

mance of re-docking process was evaluated 

by RMSD (Root Mean Square Deviation) 

value between the superimposed ligand 

from the docking result and co-crystallized 

ligand <2Å and the catalytic residues involve 

in protein-ligand bound (Gln47 and Arg136 

that involved in hydrogen bond). 

Docking of tested compounds against 

the target protein was performed using the 

same software and parameters as used in 

the re-docking process. The Vina Search 

Space was determined based on residues 

that involved in the configuration of the ac-

tive site (center X: 49.87614, Y: 41.07927, 

Z: -1.71916; size X: 23.45541, Y: 29.20333, 

Z: 21.20155). Docking simulations were ex-

ecuted at an exhaustiveness and number of 

mode of 8 and 9, respectively. The docking 

 

 

results were saved in CSV format.  

Visualization and analysis of the protein- 

ligand complexes, as well as 2D interaction 

between protein and ligand were carried out 

using PyMOL Molecular Graphic System 

v.2.5.2 Edu (Schrödinger, USA) and Lig-

plot+ v.2.2.5 software (Verma et al. 2014). 

 

Molecular Dynamic 

The molecular dynamic simulations 

were carried out using Yasara Dynamic 

(YASARA Biosciences, Austria). A cube wa-

ter box was generated for the simulation 

cell, while the steepest descent minimization 

algorithm was used for energy minimization. 

AMBER14 was utilized as a force field. To 

neutralize the system, Na+ and Cl- ions were 

added. The following physiological condi-

tions were applied into this system: temper-

ature 298 K, pH 7.4, water density 0.997 g/L, 

and ion concentration 0.9% NaCl. Molecular 

dynamic simulation was performed for 150 

ns and structural snapshot was taken for 

every 100 ps. Molecular dynamic simula-

tions were examined based on RMSD (Root 

Mean Square Deviation) and RMSF (Root 

Mean Square Fluctuation) values, com-

plexes’ trajectories, and protein-ligand inter-

actions. 

 

Drug-likeness, Bioactivity, and ADMET 

Analysis 

The SMILES notation of the hit com-

pound was used for analysis of the drug-

likeness, bioactivity and ADMET character-

istics. The drug-likeness was evaluated us-

ing Lipinski’s rules of five by the Swiss Insti-

tute of Bioinformatics: absorption, distribu-

tion, metabolism, and excretion test or Swis-

sADME (http://www.swissadme.ch/in-

dex.php) (Wicaksono et al. 2022), while 

Way2Drug PASS Online website 

(http://www.way2drug.com/PASSOnline) 

was used for the prediction of biological ac-

tivity (Druzhilovskiy et al. 2017). The AD-

METLab 2.0 server (https://admet-

mesh.scbdd.com/service/evaluation/index) 

was used to tracked the adsorption, distribu-

tion, metabolism, excretion, and toxicity 

(Xiong et al. 2021), to determine the safety 

of our compound for consumption. 
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RESULT AND DISCUSSION 

 

Inhibitory Activity of Natural Compounds 

Against DHODH 

All 33 natural compounds were sub-

jected to dihydroorotate dehydrogenase 

(DHODH) enzymatic reaction assay to ex-

amine their inhibitory activity. As shown in 

Figure 1, atovaquone showed inhibitory ac-

tivity against DHODH as high as 47.44% at 

10 µM, while the other tested compounds 

did not show any inhibitory activity at the 

same concentration. This result is similar to 

that of previous study (IC50 of 15 µM) 

(Knecht et al. 2000). We then further char-

acterized atovaquone as anti-cancer agent. 

 

Molecular Docking Simulation 

Molecular docking was performed to 

analyze the protein-ligand binding and inter-

action of the hit as a test ligand and native 

inhibitor as a control against DHODH protein 

structure. Protein structure and active site 

validation was carried out before completing 

molecular docking. Protein structure was 

verified using Ramachandran plot analysis 

(Laskowski et al. 1993), and the result 

demonstrated that the protein structure em-

ployed in this study was valid and suitable 

for further analysis (Figure S1 and Table 

S1). Accordingly, the active site validation 

likewise produced a satisfying result, with 

RMSD values of 20 times re-docking proce-

dures being less than the threshold line of 

2.0 (Bell and Zhang 2019; Nguyen et al. 

2020b) and the interacted protein residues 

with the ligand (Table S2) being identical to 

the results of the prior study by Baumgartner 

et al (2006). 

Docking simulation revealed that ato-

vaquone showed better binding affinity com-

pared to that of native inhibitor with the value 

of -12.9 and -12.2, respectively. Moreover, 

atovaquone interacted with the protein at 

residues those are involved in ubiquinone 

active site. Atovaquone formed hydrogen 

bonds with residues Gln47 and Arg136 from 

protein, which was the same with that of na-

tive inhibitor (Baumgartner et al. 2006). On 

the other hand, atovaquone only inhibited 

DHODH by as much as 47,44% at 10 µM 

(Figure 1). Interestingly, although inhibitory 

activity of atovaquone was similar to the pre-

vious report (IC50 of 15 µM) (Knecht et al. 

2000), this was much higher compared to 

that of the native inhibitor (IC50 of 2 nM), 

which showed lower binding affinity had in 

activity assay (Baumgartner et al. 2006). 

Thus, this result clearly demonstrated the 

distinct impact of molecular docking to the 

drug discovery process compared to that of 

activity assay.  

 . 

Molecular Dynamic Simulation 

As described in above, binding affinity 

value of a ligand from molecular docking 

process does not directly reflect to its inhibi-

tory activity. There are several considera-

tions in molecular docking process that was 

took into account to decrease computational 

burden, including the use of simplified algo-

rithms such as kept the protein in a rigid 

structure. We assumed that the disagree-

ment of our docking result and activity assay 

result could also due to this circumstance. In 

order to clarify this assumption, we per-

formed molecular dynamics simulation of 

protein-ligand complex structure to investi-

gate the inhibitory mechanism of the protein 

by the ligand. Molecular dynamics simula-

tion is a robust method to study macromole-

cules’ dynamics by taking into account ac-

tual experimental conditions and it has been 

widely used for several purposes, including 

assessing the stability of ligand poses in the 

complex protein-ligand (Sakano et al. 2016; 

Liu et al. 2017), providing information about 

protein-ligand interactions which calculates 

the effect of solvent (Shen et al. 2013; 

Llanos et al. 2021), investigating the recep-

tor’s conformational changes upon ligand 

binding through molecular dynamic trajecto-

ries (Wang et al. 2013; Hirano et al. 2021). 

We compared the RMSD (root mean square 

deviation) and RMSF (root mean square 

fluctuation) values of protein-native ligand 

and protein-atovaquone complex structures 

from molecular dynamic simulation. Molecu-

lar dynamic of apo protein was also simu-

lated under the same condition.  

Molecular dynamics simulation of pro-

tein-native inhibitor revealed that the aver-

age RMSD value of the ligand movement 

was 1.112 Å with a constant pattern (not 

much fluctuated) (Figure 2), indicating that 

the native inhibitor bound firmly with the pro-

tein along the simulation period (150 ns). 

Trajectory result of this complex revealed 
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that the native inhibitor bond to active site 

(Figure 3) through hydrogen bonds between 

carboxyl group of the ligand and Gln47 and 

Arg136 of the protein (Figure 3b), indicating 

that the native inhibitor bond in the active 

site (ubiquinone binding site). This result 

was consistent with the previous study 

(Baumgartner et al. 2006). The hydrogen 

bond is not only important for binding, but 

also for transportation, adsorption, distribu-

tion, metabolization, and excretion of small 

molecules (Böhm and Schneider 2003). 

Other type of interactions, such as hydro-

phobic bond and π-interaction with several 

residues, also helped the ligand bind to the 

protein (Figure 3c). The RMSF value of 

Gln47 and Arg136 of protein-native inhibitor 

complex were decreased to 1.11 Å and 0.54 

Å, respectively, while compared to that of 

the same residue in apo protein (2.04 Å and 

0.91 Å, respectively) (Figure 4), suggested 

that respective residues were stabilized by 

the ligand binding. Both residues also 

showed to bind with the ligand consistently 

along the simulation (Figure S4a), indicating 

the importance of these residues in ligand 

binding. 

We then examined the molecular dy-

namics of protein-atovaquone complex. The 

average initial RMSD value of atovaquone 

movement up to the first 43 ns was 1.15 Å 

(Figure 2), which is comparable with that of 

native inhibitor. The carbonyl group of the 

ligand formed hydrogen bonds with Gln47 

and Arg136 within this period (Figure 5b). 

However, RMSD value of the ligand in-

creased drastically to average 5.24 Å after 

43 ns until the end of simulation (Figure 2). 

Hydrogen bond between the ligand and 

Arg136 was broken, while the hydrogen 

bond between Gln47 and the ligand was 

maintained during this period (Figure 5c). 

Trajectory observation of the ligand re-

vealed that the ligand was protruded from 

the active site during this period (Figure 5c). 

Moreover, RMSF values of Gln47 and 

Arg136 of this complex were 1.87 Å and 

1.51 Å, respectively. These values are 

higher than that of protein-native inhibitor, 

indicating that harsh fluctuation of  

respective residues was occurred during 

protein-atovaquone interaction.  

 

Based on the molecular docking re-

sult, we identified that atovaquone as the 

most potent inhibitor of DHODH within the 

tested compounds. Although showed better 

binding affinity value, the inhibitory activity 

was not as high as that of native inhibitor. 

Based on molecular dynamics analysis re-

sult, hydrogen bond between carbonyl 

group of atovaquone and Arg136 was bro-

ken at 43 ns. In contrast, hydrogen bond be-

tween carboxyl group of the native inhibitor 

and Arg136 was maintained along the simu-

lation, suggested the importance of carboxyl 

group for binding of the ligand in the active 

site. Therefore, conversion of carbonyl 

group of atovaquone into carboxyl group 

may increase the binding stability of the lig-

and to the active site, which may also in-

crease the inhibitory activity. The im-

portance of carboxyl group in the inhibitor of 

DHODH was also demonstrated in the pre-

vious report using Brequinar (Fritzson et al. 

2010). 

The disagreement between molecular 

docking result and activity assay has been 

widely experienced by many researchers. 

Recently, de Sousa et al conducted a mo-

lecular docking using Zinc15 database com-

posed from 7070 compounds to identify in-

hibitor of Plasmodium falciparum β-haema-

tin (de Sousa et al. 2020). Most of top 15 

compounds with lowest binding affinity val-

ues (between -12.5 kcal/mol to -14.2 

kcal/mol) showed high to moderate IC50 

value (micromolar level) against the target. 

The issues might be related to deletion of  

water molecules during preparation of pro-

tein for the docking process, scoring func-

tion, and the use of rigid protein structure 

(Zoete et al. 2009; Pantsar and Poso 2018), 

which may lead to misprediction of binding 

affinity and binding pose. 

 

Drug-likeness, Bioactivity, and ADMET 

Analysis 

Analyzes were also carried out regard-

ing the druglikeness, bioactivity and ADMET 

of Atovaquone to examine its pharmakoki-

netic properties and possible target. The ful-

fillment of the Lipinski requirements led to 

the identification of atovaquone for use as 

an oral medication. The result (Table 3)  
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showed atovaquone meets all standards in 

parameters molecular weight (MW < 500 

g/mol), Moriguchi octanol-water partition co-

efficient (M log P < 4.15), hydrogen bond do-

nors (< 5) and hydrogen bond acceptor (< 

10) (Doak et al. 2014). Moreover, the bioa-

vailability score shows that Atovaquone has 

a value of 0.86 (range 0 - 1) which means 

good pharmakokinetic properties (Bojarska 

et al. 2020). The synthetic accessibility prop-

erty also showed a positive result with the 

value of 4.07 (range 1 – 10), indicating that 

atovaquone is generally simple to produce 

(Ertl and Schuffenhauer 2009). 

The PASS Online software 

(http://www.way2drug.com/passonline) was 

also used to determine the probable cellular 

targets of Atovaquone. Due to our focus on 

finding anticancer agents, we were able to 

anticipate the anticancer activity in which 

some factors, such as antineoplastic, antiox-

idant, and angiogenesis inhibitor (Kapoor et 

al. 2022; Wicaksono et al. 2022) and also 

several types of cancer that related to 

DHODH activity: breast cancer (Mohamad 

Fairus et al. 2017), colorectal cancer 

(Yamaguchi et al. 2019; Kurth et al. 2021), 

acute myeloid leukemia (AML) (Wu et al. 

2018), small cell lung cancer (Li et al. 2019), 

bladder cancer (Cheng et al. 2020), pancre-

atic cancer (Koundinya et al. 2018) etc, The 

result (Figure 6) showed that Atovaquone is 

indicated to have no bioactivity in the speci-

fied parameters, due all Pa values were less 

than 0.5 which meant the compound was 

very unlikely to be related to the biological 

activity of the substance tested. This may be 

related to the findings of molecular dynam-

ics simulations, which indicate that ato-

vaquone has a poor inhibitory mechanism 

because it has a low potential for bioactivity 

towards targets with a connection to the 

DHODH enzyme in their therapy. 

The ADMET (Figure 7) data showed 

that Atovaquone some notes on its pharma-

cokinetic characteristics, especially on the 

toxicity parameters. Atovaquone may have 

harmful consequences on a number of vari-

ables, including carcinogenicity, AMES, oral 

acute toxicity, Human Ether-a-go-go-related 

Gene (hERG), especially on the Human 

hepatotoxicity (H-HT) and drug-induced liver 

injury (DILI), and this may be due to its struc-

ture. 

CONCLUSION 

 

In this study, we have discovered that 

atovaquone was the only compound that 

could inhibit the DHODH enzyme moder-

ately through an activity assay on 33 natural 

compounds. However, this result did not 

correlate with the docking simulation, indi-

cating that atovaquone might have promis-

ing activity against DHODH, due to its bind-

ing affinity score. Molecular dynamic analy-

sis revealed the inhibitory mechanism of na-

tive ligand and atovaquone against DHODH 

where native ligand was stably bound to the 

active site, while atovaquone was driven out 

of the active site after being bound for only 

43 ns of simulation as a result of the hydro-

gen bond breaking with the implicated resi-

due, and that variation could be brought 

about by the two ligands' different chemical 

groups. Our result also demonstrated that 

molecular dynamic is a powerful tool for re-

vealing ligand interactions in protein-ligand 

complexes and investigating their mode of 

action, which are beneficial for future re-

search. 
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TABLES AND PICTURES 

Table 1. List of compounds used in this study 

No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

1 Prodigiosin 135455579 

 

Pyrrole pigment C20H25N3O 323.4 

Serratia 
marcescens, 
Serratia nema-
todiphilia 
(Arivizhivendhan et 
al. 2018; Maurya et 
al. 2020) 

Anticancer, antimicrobial, 
antifungal (El-Bondkly et 
al. 2012; Lapenda et al. 
2015; Li et al. 2018) 

2 OM-173 αA 12803368 

 

 
 

Quinone C17H16O6 316.09 
Streptomyces sp 
(Iwai et al. 1983) 

Antimicrobial (Iwai et al. 
1983) 

3 Viridiol 5459246 

 

Furanosteroid C20H18O6 354.4 
Trichoderma virens 
(Bansal et al. 2018; 
Pakora et al. 2021) 

Antifungal (Ji et al. 2019) 

4 
PF 1052 
(Spylidone) 

54687121 

 

N-alkylpyrroli-
dine  

C26H39NO4 429.6 
Ulocladium atrum 
(Gaylarde et al. 2015) 

Antibiotic (Gaylarde et al. 
2015) 
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No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

5 Territrem B 114734 

 

Pyrone C29H34O9 526.6 
Aspergillus Terreus 
(Bunbamrung et al. 
2020) 

Anti-AchE (Acetylcholin-
esterase) (Chen et al. 
1999) 

6 Radicicol 6323491 

 

Phenolic 
macrolide 

C18H17ClO6 364.8 
Cylindrocarpon de-
structans (Li et al. 
2022) 

Antibiotic and antifungal 
(Evans and White 1966) 

7 Nocardamine 161532 

 

Cyclic 
siderophore 

C27H48N6O9 600.7 

Streptomyces sp. 
(Santamaría et al. 
2020; Mahmud et al. 
2022) 

Antimalarial, antimicro-
bial (Santamaría et al. 
2020; Mahmud et al. 
2022) 

8 
Rugulosin/ 
rugulosin A 

24776464 

 

Anthraquinone 
dimers 

C30H22O10 542.5 

Chrysoporthe sp, 
Ophiocordyceps 
formosana, Penicil-
lium sp. (Nirma et al. 
2015; Li et al. 2017; 
Liu et al. 2019) 

Antimicrobial (Yamazaki 
et al. 2010) 

9 Atovaquone 74989   

 

Naphthoquinone C22H19ClO3 366.8 

Derivative of Naphta-
quinone, (from Mon-
acrosporium 
ambrosium, Plum-
bago zeylanica, 
Caesalpinia sappan) 
(Kehelpannala et al. 
2018; Mone et al. 
2021) 

Antitumor, antimalarial 
(Nixon et al. 2013; Gao 
et al. 2018) 
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No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

10 Amidepsine A 10698236 

 

Depside C29H29NO11 567.5 
Humicola sp. (Niu 
2017; Ibrahim et al. 
2021) 

Antimicrobial, Anti-DGAT 
(Diacylglycerol Acyl-
transferase) (Tomoda et 
al. 1995) 

11 Dihydrochlamydocin 167994628 

 

 

Peptide C28H40N4O6 528.6 

Pochonia 
Chlamydosporia 
(Degenkolb and 
Vilcinskas 2016) 

Antibiotic (Karle 1996) 

12 Curvularin 119418 

 

Lactone 
macrolide 

C16H20O5 292.3 

Cochliobolus sp., 
Phoma macrostoma 
(Ataides et al. 2018; 
Choi et al. 2022) 

Antibacterial, antifungal, 
antivirulence (Ataides et 
al. 2018; Choi et al. 
2022) 

13 Herquline A 198537 

 

Alkaloid C19H26N2O2 314.4 
Penicillium herquei 
(Chiba et al. 2017) 

Anti-influenza virus 
(Chiba et al. 2017) 

14 Amauromine 10369017 

 

Alkaloid C32H36N4O2 508.7 
Malbranchea circinate 
(Rangel-Grimaldo et 
al. 2020) 

Vasodilating activity 
(Takase et al. 1985) 

https://pubchem.ncbi.nlm.nih.gov/#query=C32H36N4O2
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No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

15 Ambuic acid 11152290 

 

Cyclohexenone C19H26O6 350.4 

Pestalotiopsis ne-
glecta, Pestalotiopsis 
lespedezae (Zhang et 
al. 2018; Yu et al. 
2021b) 

Anti‑inflammatory, anti-
fungal (Li et al. 2001; 
Zhang et al. 2018) 

16 Paxilline 105008 

 

Indole C27H33NO4 435.6 
Penicillium paxillin 
(Skellam 2022) 

A focal adhesion 
associated adaptor pro-
tein (Schaller 2001) 

17 Oosporein 135426831 

 

Quinone C14H10O8 306.22 

Beauveria bassiana, 
Beauveria caledonica 
(Moonjely et al. 2018; 
Mc Namara et al. 
2019) 

Immunosuppressant-
Pest control agent (Mc 
Namara et al. 2019) 

18 Chartreusin 5281394 

 

Naphthoquinone C32H32O14 640.6 

Streptomyces pseu-
dovenezuelae, Strep-
tomyces sp. 
(Kuncharoen et al. 
2019; Volynkina et al. 
2022) 

Antitumor, antibiotic 
(Leach et al. 1953; Xu et 
al. 2005) 

19 
Penicillide/ 
vermixocin A 

124213 

 

Lactone C21H24O6 372.4 
Penicillium sp. 
(Nichea et al. 2015) 

A nonpeptide calpain in-
hibitor (Chung et al. 
1998) 
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No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

20 Actinonin 443600 

 

Hydroxamic 
acid, pseudo-

peptide 
C19H35N3O5 385.5 

Streptomyces sp. 
(Yang and Sun 2016; 
Wolf et al. 2018) 

Antimicrobial/ antibiotic 
(Wolf et al. 2018) 

21 Pyranonigrin A 16756786 

 

Pyranopyrrole C10H9NO5 223.18 
Aspergillus niger 
(Riko et al. 2014; 
Romsdahl et al. 2020) 

Antioxidant (Romsdahl et 
al. 2020) 

22 
Heptelidic acid/ 
koningic acid 

10945834 

 

Sesquiterpene 
lactone 

C15H20O5 280.32 

Trichoderma koningii, 
Trichoderma virens 
(Yan et al. 2020; 
Zhang et al. 2021) 

Glyceraldehyde-3- 
phosphate dehydrogen-
ase inhibitor, tau 
aggregation-induced Alz-
heimer's disease and as-
sociated neurotoxicity in-
hibitor, anticancer 
(Taylor et al. 2020; Yan 
et al. 2020; Zhang et al. 
2021; Isozaki et al. 2022) 

23 1233B 10405119 

 

Hydrocarbon C18H30O6 342.43 
Fusarium sp. (Kato et 
al. 2020) 

Antibiotic, Antibacterial 
(AdipoGen Life Sciences 
2017) 

24 
Aspergillimide/ 
asperparaline A 

154701594 

 

Paraher-
quamide/ 

oxindole alkaloid 
C20H29N3O3 359.5 

Aspergillus flavus 
(Ezekiel et al. 2020) 

Anthelmintic (Banks et 
al. 1997) 

https://pubchem.ncbi.nlm.nih.gov/#query=C19H35N3O5
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No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

 25 Enterocin 23654446 

 

Polyketide C22H20O10 444.4 

Streptomyces, 
Enterococcus fae-
cium, Enterococcus 
sp. (Nguyen et al. 
2020a; Qiao et al. 
2020; Kasimin et al. 
2022) 

Antibacterial(Qiao et al. 
2020; Kasimin et al. 
2022) 

26 Elasnin 54685126 

 

Pyrone C24H40O4 392.6 
Streptomyces mo-
baraensis (Long et al. 
2021) 

Human 
granulocyte elastase in-
hibitor, antibiofilm (Ohno 
et al. 1978; Long et al. 
2021) 

27 Concanamycin B 6440685 

 

Macrolide C45H73NO14 852.1 
Streptomyces scabiei 
(Deflandre et al. 
2022) 

V-ATPases and 
P-ATPases inhibitor 
(Dröse and Altendorf 
1997) 

28 Aranorosin 6444217 

 

Cyclohexanone 
bisepoxide 

C23H33NO6 419.5 
Pseudoara chniotus 
roseus (Yu et al. 
2021a) 

Antibiotic (Roy et al. 
1988) 

29 Harzianopyridone 54697782 

 

Pyridine C14H19NO5 281.3 
Trichoderma harzi-
anum (Shah et al. 
2022) 

Antifungal, antioxidant 
enzyme and antioxidant 
metabolite stimulant, 
plan growth promoter, 
antimicrobial (Dickinson 
et al. 1989; Shah et al. 
2022) 

30 Lactacystin 6610292 

 

γ-lactam 
C15H24N2O7

S 
376.4 

Streptomyces lacta-
cystinaeus (Ōmura 
and Crump 2019) 

Proteasome inhibitor 
(Ōmura and Crump 
2019) 
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No. Name Pubchem ID Chemical structure Group 
Molecular 
formula 

Molecular 
weight 

Origin Activity 

31 Geodin 216465 

 

Hydroxyanthra-
quinone 

C17H12Cl2O7 399.2 
Aspergillus terreus, 
Aspergillus sp. (Said 
and Ahmad 2022) 

Antimicrobia, glucose 
stimulator for rat adipo-
cytes, enhancement of fi-
brinolytic activit, 
cytotoxic activity 
(Rinderknecht and Ward 
1947; Shinohara et al. 
2000; Sato et al. 2005; 
Rønnest et al. 2012) 

32 Andrastin A 6712564 

 

Steroid C28H38O7 486.6 
Penicillium roqueforti 
(Rojas-Aedo et al. 
2017) 

Protein farnesyltransfer-
ase 
Inhibitor/ antitumor 
(Uchida et al. 1996; 
Rojas-Aedo et al. 2017) 

33 Amidepsine D 10391109 

 
 

Depside C26H24O10 496.5 
Humicola sp. (Niu 
2017; Ibrahim et al. 
2021) 

Antimicrobial, Triacyl-
glycerol inhibition, Di-
acylglycerol acyltransfer-
ase inhibitor (Tomoda et 
al. 1995) 
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Table 2. Molecular docking result of native ligand and atovaquone against DHODH 

Compound 
Binding affinity 

(kcal/mol) 
Residue Involved 

Native Inhibitor (3-({[3,5-
difluoro-3'-(trifluorometh-
oxy)biphenyl-4-yl]amino}car-
bonyl)thiophene-2-carboxylic 
Acid) 

-12.2 
Tyr38, Leu42, Met43, Leu46, Gln47, Ala55, His56, 

Ala59, Leu67, Leu68, Val134, Arg136, Tyr356, Leu359, 
Thr360, Pro364 

Atovaquone -12.9 
Tyr38, Met43, Leu46, Gln47, Ala55, His56, Ala59, 

Pro69, Phe98, Val134, Arg136, Tyr356, Leu359 Pro364 

Note: Green, hydrogen bond; black, hydrophobic bond 

 

Table 3. SwissADME output of atovaquone 

Compound 
Molecular weight 

(g/mol) < 500 
g/mol 

Lipinski’s Rule 
of Five < 1 viola-

tion 

Bioavaila-
bility score 

Synthetic 
accessi-

bility 

Atovaquone 366.84 Yes; 0 violation 0.86 4.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Inhibitory activity assay result of the tested compounds against DHODH 
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 Figure 2. Root Mean Square Deviation (RMSD) of the movement of native inhibitor (green), and ato-
vaquone (blue), in active site of DHODH 

 

 

A 

 

B 

 

  

  
 

Figure 3. Graphical illustration of active site of complex DHODH-native inhibitor. Green, native inhibitor; 
A, surface of the active site; B, protein-ligand hydrogen bond interaction at 30 ns; C, other 
interactions inside the active site at 0 ns. 

C 
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Figure 4. Root Mean Square Fluctuation (RMSF) of each residue in DHODH when interacted with native 

inhibitor (blue), and atoaquone (orange), Yellow line, RMSF for residues in apo protein. 
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Figure 5. Graphical illustration of active site of complex DHODH-atovaquone. Green, atovaquone; A, 

surface of the active site; B, protein-ligand hydrogen bond interaction at 0 ns; C, protein-ligand 
hydrogen bond interaction at 45 ns; D, other interactions inside the active site at 0 ns. 
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Bioactivity Criteria Pa Pi 

Anticarcinogenic 0.267 0.073 

Antineoplastic 0.424 0.095 

Antioxidant 0.216 0.047 

Antineoplastic (breast cancer) 0.149 0.139 

Angiogenesis inhibitor - - 

Antineoplastic (non-small cell lung cancer) - - 

Antineoplastic (colorectal cancer) 0.119 0.114 

Antineoplastic (colon cancer) 0.11 0.109 

Antineoplastic (non-Hodgkin's lymphoma) 0.338 0.172 

Antineoplastic (lung cancer) 0.23 0.057 

 Antineoplastic (melanoma) 0.16 0.088 

Antileukemic - - 

Antineoplastic (multiple myeloma) 0.249 0.157 

Figure 6. Bioactivity of anticancer prediction of atovaquone using Way2Drug (PASS) server 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. ADMET analysis of Atoavquone. Green color represents desirable properties, yellow color 
represents probably not desirable and Red color represents non-desirable properties. Plasma 
protein binding (PPB); volume of distribution (Vd); blood brain barrier permeability (BBB), frac-
tion unbound (Fu), hepatotoxicity (H-HT), Drug-induced Liver Injury (DILI), FDA maximum rec-
ommended daily dose (FDAMDD). 

Absorption Excretion

Caco-2 Permeability Clearance

MDCK Permeability Toxicity

Intestinal Absorption hERG Blockers

Pgp-inhibitor H-HT

Pgp-substrate DILI

Bioavailability (20%) AMES Toxicity

Bioavailability (30%) Rat Oral Acute Toxicity

Distribution FDAMDD

PPB Skin Sensitization

VD Carcinogencity

BBB Eye Corrosion

Fu Eye Irritation

Metabolism Respiratory Toxicity

CYP1A2 inhibitor -

CYP1A2 substrate ++

CYP2C19 inhibitor +

CYP2C19 substrate --

CYP2C9 inhibitor +

CYP2C9 substrate --

CYP2D6 inhibitor ++

CYP2D6 substrate ---

CYP3A4 inhibitor ---

CYP3A4 substrate --


