OPTIMASI PROSES UNTUK EKSPRESI GEN ENDOGLUKANASE DARI Bacillus sp. RP1 OLEH Escherichia coli BL21 (DE3)/egc

Main Article Content

Hans Victor
Maelita Ramdani Moeis

Abstract

Selulase adalah salah satu enzim yang banyak dimanfaatkan dalam berbagai industri. Sebagai upaya untuk memenuhi kebutuhan, 50 tahun terakhir dikembangkan beberapa strategi untuk meningkatkan produksi selulase yang mencakup rekayasa genetika dan optimasi proses. Karena itu, dilakukan kloning gen egc dan RBS yang berasal dari Bacillus sp. RP1 yang diisolasi dari sumber air panas ke dalam vektor pGEM-T Easy. E. coli BL21 (DE3) ditransformasikan dengan vektor yang mengandung gen egc tersebut. Setelah kloning, optimasi proses berupa desain medium turut dilakukan untuk mengoptimalkan ekspresi gen egc. Desain medium diawali dengan seleksi komposisi medium menggunakan metode Plackett-Burman. Komponen medium yang diuji adalah kulit beras, molase, amonium klorida, urea dan tepung ikan. Kulit beras dan molase diperoleh sebagai bahan yang paling berpengaruh terhadap aktivitas enzim dan berat kering sel. Tahap selanjutnya melibatkan metode statistik Box-Behnken dan metodologi respons permukaan yang bertujuan mengoptimalkan respons aktivitas enzim dan berat kering sel terhadap konsentrasi molase, konsentrasi kulit beras dan lama fermentasi. Konsentrasi yang diuji adalah 1%, 5,5% dan 10%, sedangkan lama fermentasi yang diuji adalah 24, 36 dan 48 jam. Konsentrasi optimal molase adalah 7,45% dan konsentrasi optimal kulit beras adalah 6,45% dengan lama fermentasi optimal 39,52 jam.

Article Details

How to Cite
Hans Victor, & Maelita Ramdani Moeis. (2018). OPTIMASI PROSES UNTUK EKSPRESI GEN ENDOGLUKANASE DARI Bacillus sp. RP1 OLEH Escherichia coli BL21 (DE3)/egc. Jurnal Bioteknologi Dan Biosains Indonesia, 5(1), 44–52. https://doi.org/10.29122/jbbi.v5i1.1769
Section
Articles

References

Acharya S, Chaudhary A (2012) Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz Arch Biol Technol 55: 497-503. doi: 10.1590/S1516-89132012000400003

Figueira R, Brown DR, Ferreira D, Eldridge MG, Burchell L, Pan Z, Helaine S, Wignesweraraj S (2015) Adaptation to sustained nitrogen starvation by Escherichia coli requires the eukaryote-like serine/threonine kinase YeaG. Sci Rep 5: 1-14. doi: 10.1038/srep17524

Gaur R, Tiwari S (2015) Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol 15:19. doi: 10.1186/s12896-015-0129-9

Gohel HR, Contractor CN, Ghosh SK, Braganza VJ (2014) A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxy Methyl Cellulose (CMC) agar plates. Int J Curr Microbiol App Sci 3: 261-266

Kim MH, Kang DU, Lee JW (2016) Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor. Biotechnol Bioprocess Eng 21: 601-611. doi: 10.1007/s12257-016-0468-y

Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletshcke BI, Singh A, Karp M (2016) Revisiting cellulase production and redeï¬ning current strategies based on major challenges. Renew Sust Energ Rev 55: 249-272. doi: 10.1016/j.rser.2015.10.132

Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 1-10. doi: 10.4061/2011/280696

Lee YJ, Kim HJ, Gao W, Chung CH, Lee JW (2012) Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol Bioproc Eng 17: 227-235. doi: 10.1007/s12257-011-0258-5

Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5: 500-516. doi: 10.7150/ijbs.5.500

Mattanovich D, Kramer W, Luttich C, Weik R, Bayer K, Katinger H (1998) Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol Bioeng 58: 296-298. doi: 10.1002/(SICI)1097-0290(199804 20)58:2/3<296::AID-BIT26>3.0.CO;2-9

Moeis MR, Natalia D, Ningrum RW, Dwijayanti A (2014) Cloning and expression of endoglucanase gene from thermophilic bacteria Bacillus sp. RP1. Microbiol Indones 8: 170-176. doi: 10.5454/mi.8.4.4

Muñoz C, Hidalgo C, Zapata M, Jeison D, Riquelme C, Rivas C (2014) Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl Environ Microbiol 80: 4199-4206. doi: 10.1128/AEM.00827-14

Parekh S, Vinci VA, Strobel RJ (2000). Improvement of microbial strains and fermentation process. Appl Microbiol Biotechnol 54: 287-301. doi: 10.1007/s002530000403

Puspitasari IN, Moeis MR (2008) Screening of seven cellulase and xylanase producing Bacillus species and analysis of the cellulase and xylanase expression pattern of the selected isolate. Pp 194-201. Proceedings of the Second International Conference on Mathematics and Natural Sciences (ICMNS) 28-30 October, Bandung

Sadhu S, Maiti TK (2013) Cellulase production by bacteria: A review. Br Microbiol Res J 3: 235-258. doi: 10.5281/zenodo.8687

Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM (2017). Strategies for fermentation medium optimization: An in-depth review. Front Microbiol 7: 2087. doi: 10.3389/fmicb.2016.02087

Smith A (1995) Gene Expression in Recombinant Microorganisms. Marcel Dekker Inc, New York

Studier FW, Daegelen P, Lenski RE, Maslov S, Kim JF (2009) Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K12 genomes. J Mol Biol 394: 653-680. doi: 10.1016/j.jmb.2009.09.021

Xu J, Banerjee A, Pan SH, Li ZJ (2012) Galactose can be an inducer for production of therapeutic proteins by auto-induction using E. coli BL21 strains. Protein Expr Purif 83: 30-36. doi: 10.1016/j.pep.2012.02.014