A REVIEW OF NANOCELLULOSE SYNTHESIS METHODS AND ITS APPLICATION

Main Article Content

Joko Waluyo

Abstract

Nanocellulose is a type of cellulose that is being widely developed to replace petroleum-based polymers. This material possesses biocompatible properties, is abundant in nature, and is eco-friendly due to its biodegradability, sustainability, and non-toxic nature. Various nanocellulose synthesis methods are employed, including acid hydrolysis, alkaline, mechanical and biological treatments, as well as ionic liquid and deep eutectic solvent methods. The choice of synthesis method greatly influences the particle size and crystallinity of the resulting nanocellulose; hence further investigation is needed to determine the effectiveness of these methods. Nanocellulose finds applications in various fields, such as films, polymers, cosmetics, medical fuels, and energy storage. Among the different nanocellulose synthesis methods, ionic liquid and deep eutectic solvent (DES) methods have environmentally safe waste with better temperature, time, and diameter control compared to other methods. However, the DES method is currently preferred over the ionic liquid method due to the possibility of separating the lignin waste from the solvent.

Article Details

How to Cite
Waluyo, J. (2023). A REVIEW OF NANOCELLULOSE SYNTHESIS METHODS AND ITS APPLICATION. Jurnal Bioteknologi Dan Biosains Indonesia, 10(1), 128–149. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1739
Section
Articles

References

Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29). https://doi.org/10.1021/ja048266j

Abdul Khalil, H. P. S., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665. https://doi.org/10.1016/J.CARBPOL.2013.08.069

Abral, H., Ariksa, J., Mahardika, M., Handayani, D., Aminah, I., Sandrawati, N., Sapuan, S. M., & Ilyas, R. A. (2020). Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polymer Testing, 81, 106186. https://doi.org/10.1016/J.POLYMERTESTING.2019.106186

Abushammala, H., Krossing, I., & Laborie, M. P. (2015). Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydrate Polymers, 134. https://doi.org/10.1016/j.carbpol.2015.07.079

Admojo, L., & Setyawan, B. (2018). POTENSI PEMANFAATAN LIGNOSELULOSA DARI BIOMASA KAYU KARET (Hevea brasisiliensis Muell Arg.). Warta Perkaretan, 37(1), 39–50. https://doi.org/10.22302/PPK.WP.V37I1.529

Aguilar-Sanchez, A., Jalvo, B., Mautner, A., Nameer, S., Pöhler, T., Tammelin, T., & Mathew, A. P. (2021). Waterborne nanocellulose coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. Journal of Membrane Science, 620. https://doi.org/10.1016/j.memsci.2020.118842

Ahankari, S. S., Subhedar, A. R., Bhadauria, S. S., & Dufresne, A. (2021). Nanocellulose in food packaging: A review. Carbohydrate Polymers, 255, 117479. https://doi.org/10.1016/J.CARBPOL.2020.117479

Ahmad, S. W., Yanti, N. A., & Muhiddin, N. H. (2019). Pemanfaatan Limbah Cair Sagu untuk Memproduksi Selulosa Bakteri. Jurnal Biologi Indonesia, 15(1), 33–39.

Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2013). Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chemistry, 15(3), 584–595. https://doi.org/10.1039/C3GC37065H

Alvarez-Vasco, C., Ma, R., Quintero, M., Guo, M., Geleynse, S., Ramasamy, K. K., Wolcott, M., & Zhang, X. (2016). Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chemistry, 18(19), 5133–5141. https://doi.org/10.1039/C6GC01007E

Ariyantini, M. D. (2017). Preparasi Nanoselulosa dari Tongkol Jagung dengan Metode Hidrolisis Asam Pada Berbagai Variasi Waktu Sonikasi. Skripsi.

Arjuna, A., Natsir, S., Khumaerah, A. A., & Yulianty, R. (2018). Modifikasi Serat Limbah Kubis Menjadi Nanokristalin Selulosa Melalui Metode Hidrolisis Asam. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 4(2), 119–125. https://doi.org/10.22487/j24428744.2018.v4.i2.11093

Asim, A. M., Uroos, M., Naz, S., & Muhammad, N. (2021). Pyridinium protic ionic liquids: Effective solvents for delignification of wheat straw. Journal of Molecular Liquids, 325. https://doi.org/10.1016/j.molliq.2020.115013

Babicka, M., Wo?niak, M., Dwiecki, K., Borysiak, S., & Ratajczak, I. (2020). Preparation of nanocellulose using ionic liquids: 1-propyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride. Molecules, 25(7). https://doi.org/10.3390/molecules25071544

Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin Biosynthesis. Annual Review of Plant Biology, 54, 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

Bongao, H. C., Gabatino, R. R. A., Arias, C. F. H., & Magdaluyo, E. R. (2020). Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations. Materials Today: Proceedings, 22, 275–280. https://doi.org/10.1016/J.MATPR.2019.08.117

Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167–175. https://doi.org/10.1016/J.CARBPOL.2016.09.062

Das, L., Li, M., Stevens, J., Li, W., Pu, Y., Ragauskas, A. J., & Shi, J. (2018). Characterization and Catalytic Transfer Hydrogenolysis of Deep Eutectic Solvent Extracted Sorghum Lignin to Phenolic Compounds. ACS Sustainable Chemistry and Engineering, 6(8), 10408–10420. https://doi.org/10.1021/ACSSUSCHEMENG.8B01763

Dhali, K., Ghasemlou, M., Daver, F., Cass, P., & Adhikari, B. (2021a). A review of nanocellulose as a new material towards environmental sustainability. Science of the Total Environment, 775, 145871. https://doi.org/10.1016/j.scitotenv.2021.145871

Dhali, K., Ghasemlou, M., Daver, F., Cass, P., & Adhikari, B. (2021b). A review of nanocellulose as a new material towards environmental sustainability. Science of the Total Environment, 775, 145871. https://doi.org/10.1016/j.scitotenv.2021.145871

Effendi, D. B., Rosyid, N. H. R., Nandiyanto, A. B. D., & Mudzakir, A. (2015). Review?: Sintesis Nanoselulosa. Jurnal Integrasi Proses, 5(2), 61–74. https://doi.org/10.36055/JIP.V5I2.199

Eksiler, K., Andou, Y., Yilmaz, F., Shirai, Y., Ariffin, H., & Hassan, M. A. (2017). Dynamically controlled fibrillation under combination of ionic liquid with mechanical grinding. Journal of Applied Polymer Science, 134(7). https://doi.org/10.1002/app.44469

Elgharbawy, A. A., Alam, M. Z., Moniruzzaman, M., & Goto, M. (2016). Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal, 109, 252–267. https://doi.org/10.1016/j.bej.2016.01.021

Evelyna, A., Prakusya, N., Suprana, D. J. D., Ariswari, A. N., & Purwasasmita, B. S. (2019). Sintesis dan Karakterisasi Nanoselulosa Berbahan Serat Nanas sebagai Komponen Penguat Material Kedokteran Gigi. Jurnal Material Kedokteran Gigi, 8(2), 60–64. https://doi.org/10.32793/JMKG.V8I2.453

Felasih, E. (2010). Pemanfaatan Selulosa Bakteri - Polivinil Alkohol ( Pva ) Hasil Iradiasi ( Hidrogel ) sebagai Matriks Topeng Masker Wajah. 4.

Fikri, A. (2017). Sintesis Masker Gel Nanoselulosa dari Bahan Daun Ubi Jalar Merah. Syntax Literate, 2(11), 16–27.

Fitriana, L., Hidayah, M., & Astuti, W. (2018). Sintesis Nanoselulosa dari Batang Bambu menggunakan Hidrolisis Asam dan Gelombang Ultrasonik sebagai adsorben Logam Kadmium ( II ) dalam Limbah Industri Elektroplating. Seminar Nasional TeknikKimia ECOSMART, Semarang(2018), 212–219.

Francisco, M., van den Bruinhorst, A., & Kroon, M. C. (2012). New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chemistry, 14(8), 2153–2157. https://doi.org/10.1039/C2GC35660K

Geyer, R., Jambeck, J., advances, K. L.-S., & 2017, undefined. (2017). Production, use, and fate of all plastics ever made. Advances.Sciencemag.Org. https://advances.sciencemag.org/content/3/7/e1700782.short

Ghasemi, S., Behrooz, R., Ghasemi, I., Yassar, R. S., & Long, F. (2018). Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). Journal of Thermoplastic Composite Materials, 31(8), 1090–1101. https://doi.org/10.1177/0892705717734600

Guo, R., Zhang, L., Lu, Y., Zhang, X., & Yang, D. (2020). Research progress of nanocellulose for electrochemical energy storage: A review. Journal of Energy Chemistry, 51, 342–361. https://doi.org/10.1016/J.JECHEM.2020.04.029

Hang Shu, C., Jaiswal, R., & Syong Shih, J. (2015). Improving Biodegradation of Rice Straw Using Alkaline and Aspergillus niger Pretreatment for Methane Production by Anaerobic Co-Digestion. Journal of Bioprocessing & Biotechniques, 5(10). https://doi.org/10.4172/2155-9821.1000256

Hertiwi, L. R., Afni, A. N., Lailiyah, N., & Sanjaya, I. gusti M. (2020). Ekstraksi dan karakterisasi nanoselulosa dari limbah kulit bawang merah. Journal Education and Chemistry, 2(1), 77–81.

Hitam, C. N. C., & Jalil, A. A. (2022). Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. Environmental Research, 204, 111964. https://doi.org/10.1016/j.envres.2021.111964

Ifadah, R. A., Kusnadi, J., & Wijayanti, S. D. (2015). STRAIN IMPROVEMENT Acetobacter xylinum MENGGUNAKAN ETHYL METHANE SULFONATE (EMS) SEBAGAI UPAYA PENINGKATAN PRODUKSI SELULOSA BAKTERI [IN PRESS JANUARI 2016]. Jurnal Pangan Dan Agroindustri, 4(1), 273–282.

Ilyas Rushdana, A., Sapuan Salit, M., Lamin Sanyang, M., & Ridzwan Ishak, M. (2017). Nanocrystalline Cellulose As Reinforcement For Polymeric Matrix Nanocomposites And Its Potential Applications: A Review. Current Analytical Chemistry, 13. https://doi.org/10.2174/1573411013666171003155624

Iriani, E. S., Wahyuningsih, K., Sunarti, T. C., & Permana, A. W. (2015). Sintesis Nanoselulosa Dari Serat Nanas Dan Aplikasinya Sebagainanofillerpada Film Berbasis Polivinil Alkohol. Jurnal Penelitian Pascapanen Pertanian, 12(1), 11. https://doi.org/10.21082/jpasca.v12n1.2015.11-19

Jaekel, E. E., Sirviö, J. A., Antonietti, M., & Filonenko, S. (2021). One-step method for the preparation of cationic nanocellulose in reactive eutectic media. Green Chemistry, 23(6), 2317–2323. https://doi.org/10.1039/d0gc04282j

Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers 2019, Vol. 11, Page 675, 11(4), 675. https://doi.org/10.3390/POLYM11040675

Jiang, J., Zhu, Y., & Jiang, F. (2021). Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives. Carbohydrate Polymers, 267(March), 118188. https://doi.org/10.1016/j.carbpol.2021.118188

Julianto, H., Farid, M., & Rasyida, A. (2017). Ekstraksi Nanoselulosa dengan Metode Hidrolisis Asam sebagai Penguat Komposit Absorpsi Suara. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.24259

Khalid, I., Lestari, F. A., Afdhol, M. K., & Hidayat, F. (2020). Potensi biopolimer dari ekstraksi nanoselulosa daun kapas sebagai agen peningkatan viskositas pada injeksi polimer. PETRO: Jurnal Ilmiah Teknik Perminyakan, 9(4), 146–153. https://trijurnal.lemlit.trisakti.ac.id/petro/article/view/8162

Kim, H. J., Lee, S., Kim, J., Mitchell, R. J., & Lee, J. H. (2013). Environmentally friendly pretreatment of plant biomass by planetary and attrition milling. Bioresource Technology, 144, 50–56. https://doi.org/10.1016/J.BIORTECH.2013.06.090

Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., Kramer, F., Kondo, T., Lindström, T., Nietzsche, S., Petzold-Welcke, K., & Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today, 21(7), 720–748. https://doi.org/10.1016/J.MATTOD.2018.02.001

Ko, C. H., Yang, B. Y., Lin, L. D., Chang, F. C., & Chen, W. H. (2020). Impact of pretreatment methods on production of bioethanol and nanocrystalline cellulose. Journal of Cleaner Production, 254, 119914. https://doi.org/10.1016/J.JCLEPRO.2019.119914

Kos, T., Anžlovar, A., Kunaver, M., Huski?, M., & Žagar, E. (2014). Fast preparation of nanocrystalline cellulose by microwave-assisted hydrolysis. Cellulose, 21(4), 2579–2585. https://doi.org/10.1007/s10570-014-0315-2

Kuang, T., Ju, J., Yang, Z., Geng, L., & Peng, X. (2018). A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength. Composites Science and Technology, 159, 171–179. https://doi.org/10.1016/j.compscitech.2018.02.021

Kumar, S., & Thakur, K. (2017). Bioplastics - classification, production and their potential food applications. Journal of Hill Agriculture, 8(2), 118. https://doi.org/10.5958/2230-7338.2017.00024.6

Le Gars, M., Douard, L., Belgacem, N., & Bras, J. (2020). Cellulose Nanocrystals: From Classical Hydrolysis to the Use of Deep Eutectic Solvents. Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. https://doi.org/10.5772/intechopen.89878

Li, P., Sirviö, J. A., Asante, B., & Liimatainen, H. (2018). Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohydrate Polymers, 199. https://doi.org/10.1016/j.carbpol.2018.07.024

Lismeri, L., Zari, P. M., Novarani, T., & Darni, Y. (2016). Sintesis Selulosa Asetat dari Limbah Batang Ubi Kayu. Jurnal Rekayasa Kimia & Lingkungan, 11(2), 82. https://doi.org/10.23955/rkl.v11i2.5407

Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., Liu, Y., Li, J., & Yu, H. (2017). Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave?Assisted Treatment with Deep Eutectic Solvent. Chemsuschem, 10(8), 1692. https://doi.org/10.1002/CSSC.201601795

Maftu, E., Nursyamsi, D., Penelitian Pertanian Lahan Rawa Jl Kebun Karet Box, B. P., Utara, L., & Selatan, K. (2015). Potensi berbagai bahan organik rawa sebagai sumber biochar Potency of various organic materials from swampland as a source of biochar. PROS SEM NAS MASY BIODIV INDON, 1(4). https://doi.org/10.13057/psnmbi/m010417

Marakana, P. G., Dey, A., & Saini, B. (2021). Isolation of nanocellulose from lignocellulosic biomass: Synthesis, characterization, modification, and potential applications. Journal of Environmental Chemical Engineering, 9(6), 106606. https://doi.org/10.1016/J.JECE.2021.106606

Maryam, M., Rahmad, D., & Yunizurwan, Y. (2019). Sintesis Mikro Selulosa Bakteri Sebagai Penguat (Reinforcement) Pada Komposit Bioplastik Dengan Matriks PVA (Poli Vinil Alcohol). Jurnal Kimia Dan Kemasan, 41(2), 110. https://doi.org/10.24817/jkk.v41i2.4055

Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597–609. https://doi.org/10.1007/S13205-015-0279-4

Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550. https://doi.org/10.1016/J.PECS.2012.02.002

Mishra, R. K., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 22(8), 949–978. https://doi.org/10.1016/J.JSCS.2018.02.005

Muhajir, M. (2019). Pengaruh proses homogenisasi terhadap karakteristik film nano selulosa bakteri / Muhamad Muhajir.

Muhajir, M., Suryanto, H., & Larasati, A. (2018). Struktur dan Sifat Mekanik Film Bacterial Cellulose dengan Disintegrasi Mekanis. JPSE (Journal of Physical Science and Engineering), 3(1), 55–62. https://doi.org/10.17977/UM024V3I22018P055

Mulyadi, I. (2019). Isolasi Dan Karakterisasi Selulosa?: Review. Jurnal Saintika Unpam?: Jurnal Sains Dan Matematika Unpam, 1(2), 177. https://doi.org/10.32493/jsmu.v1i2.2381

Ng, H. M., Sin, L. T., Tee, T. T., Bee, S. T., Hui, D., Low, C. Y., & Rahmat, A. R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176–200. https://doi.org/10.1016/J.COMPOSITESB.2015.01.008

Ning, L., You, C., Zhang, Y., Li, X., & Wang, F. (2021). Polydopamine loaded fluorescent nanocellulose–agarose hydrogel: A pH-responsive drug delivery carrier for cancer therapy. Composites Communications, 26, 100739. https://doi.org/10.1016/J.COCO.2021.100739

Nugraha, A. B., Nuruddin, A., & Sunendar, B. (2021). Isolasi Nanoselulosa Terkarboksilasi dari Limbah Kulit Pisang Ambon Lumut dengan Metode Oksidasi. Journal of Science and Applicative Technology, 5(1), 236–244. https://doi.org/10.35472/JSAT.V5I1.413

Nurfitasari, I. (2018). PENGARUH PENAMBAHAN KITOSAN DAN GELATIN TERHADAP KUALITAS BIODEGRADABLE FOAM BERBAHAN BAKU PATI BIJI NANGKA (Artocarpus heterophyllus). 1–2.

Oke, I. (2010). Nanoscience in nature: cellulose nanocrystals. SURG Journal, 3(2), 77–80. https://doi.org/10.21083/surg.v3i2.1132

Owolabi, F. A. T., Deepu, A. G., Thomas, S., Shima, Jafarzadeh., Rizal, S., Sri Aprilia, N. A., & Abdul Khalil, H. P. S. (2020). Green Composites From Sustainable Cellulose Nanofibrils. Encyclopedia of Renewable and Sustainable Materials, 81–94. https://doi.org/10.1016/B978-0-12-803581-8.11422-5

Peng, J., Abomohra, A. E. F., Elsayed, M., Zhang, X., Fan, Q., & Ai, P. (2019). Compositional changes of rice straw fibers after pretreatment with diluted acetic acid: Towards enhanced biomethane production. Journal of Cleaner Production, 230, 775–782. https://doi.org/10.1016/J.JCLEPRO.2019.05.155

Phanthong, P., Karnjanakom, S., Reubroycharoen, P., Hao, X., Abudula, A., & Guan, G. (2017). A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose, 24(5), 2083–2093. https://doi.org/10.1007/s10570-017-1238-5

Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/J.CRCON.2018.05.004

Pirani, S., & Hashaikeh, R. (2013). Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydrate Polymers, 93(1), 357–363. https://doi.org/10.1016/J.CARBPOL.2012.06.063

Ramesh, S., & Radhakrishnan, P. (2019). Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Applied Surface Science, 484, 1274–1281. https://doi.org/10.1016/j.apsusc.2019.04.003

Sanchez, O., Sierra, R., & J., C. (2011). Delignification Process of Agro-Industrial Wastes an Alternative to Obtain Fermentable Carbohydrates for Producing Fuel. Alternative Fuel. https://doi.org/10.5772/22381

Saputri, L. H., & Sukmawan, R. (2020). Pengaruh Proses Blending dan Ultrasonikasi terhadap Struktur Morfologi Ekstrak Serat Limbah Batang Kelapa Sawit untuk Bahan Baku Bioplastik (Selulosa Asetat). Rekayasa, 13(1), 15–21. https://doi.org/10.21107/rekayasa.v13i1.6180

Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., & Ragauskas, A. J. (2018). Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. In Biotechnology Advances (Vol. 36, Issue 8). https://doi.org/10.1016/j.biotechadv.2018.08.009

Sirviö, J. A. (2019). Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. Journal of Materials Chemistry A, 7(2), 755–763. https://doi.org/10.1039/c8ta09959f

Sirviö, J. A., Visanko, M., & Liimatainen, H. (2015). Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chemistry, 17(6). https://doi.org/10.1039/c5gc00398a

Stolte, S., Arning, J., Bottin-Weber, U., Matzke, M., Stock, F., Thiele, K., Uerdingen, M., Welz-Biermann, U., Jastorff, B., & Ranke, J. (2006). Anion effects on the cytotoxicity of ionic liquids. Green Chemistry, 8(7), 621–629. https://doi.org/10.1039/b602161a

Suopajärvi, T., Ricci, P., Karvonen, V., Ottolina, G., & Liimatainen, H. (2020). Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Industrial Crops and Products, 145. https://doi.org/10.1016/j.indcrop.2019.111956

Supramaniam, J., Adnan, R., Mohd Kaus, N. H., & Bushra, R. (2018). Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. International Journal of Biological Macromolecules, 118, 640–648. https://doi.org/10.1016/J.IJBIOMAC.2018.06.043

Sutay Kocaba?, D., Erkoç Akçelik, M., Bahçegül, E., & Özbek, H. N. (2021). Bulgur bran as a biopolymer source: Production and characterization of nanocellulose-reinforced hemicellulose-based biodegradable films with decreased water solubility. Industrial Crops and Products, 171. https://doi.org/10.1016/j.indcrop.2021.113847

Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974–4975. https://doi.org/10.1021/ja025790m

Taher, M. A., Zahan, K. A., Rajaie, M. A., Ring, L. C., Rashid, S. A., Mohd Nor Hamin, N. S., Nee, T. W., & Yenn, T. W. (2020). Nanocellulose as drug delivery system for honey as antimicrobial wound dressing. Materials Today: Proceedings, 31, 14–17. https://doi.org/10.1016/J.MATPR.2020.01.076

Tan, Y. T., Chua, A. S. M., & Ngoh, G. C. (2020). Evaluation on the properties of deep eutectic solvent-extracted lignin for potential aromatic bio-products conversion. Industrial Crops and Products, 154, 112729. https://doi.org/10.1016/J.INDCROP.2020.112729

Tan, Y. T., Ngoh, G. C., & Chua, A. S. M. (2019). Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresource Technology, 281, 359–366. https://doi.org/10.1016/j.biortech.2019.02.010

Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C., Zeng, X., Sun, Y., Hu, L., Liu, S., Lei, T., & Lin, L. (2017). Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 10(13), 2696–2706. https://doi.org/10.1002/CSSC.201700457

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122

Triyastiti, L., & Krisdiyanto, D. (2017). Isolasi Nanoselulosa Dari Pelepah Pohon Salak Sebagai Filler Pada Film Berbasis Polivinil Alkohol ( PVA ) Isolation of Nanocellulose from The Stem ofSnakefruit Tree as Nanofiller in Polyvinyl Alcohol Based Film. Prosiding Seminar Nasional Kulit, Karet Dan Plastik Ke-6, Yogyakarta(25 Oktober 2017), 223–236.

Triyastiti, L., & Krisdiyanto, D. (2018). Isolasi nanokristal dari pelepah pohon salak sebagai filler pada film berbasis Polivinil Alkohol (PVA). Indonesian Journal of Materials Chemistry, 1(1), 39–45.

Usov, I., Nyström, G., Adamcik, J., Handschin, S., Schütz, C., Fall, A., Bergström, L., & Mezzenga, R. (2015). Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications 2015 6:1, 6(1), 1–11. https://doi.org/10.1038/ncomms8564

Wang, S., Li, H., Xiao, L. P., & Song, G. (2020). Unraveling the Structural Transformation of Wood Lignin During Deep Eutectic Solvent Treatment. Frontiers in Energy Research, 8. https://doi.org/10.3389/FENRG.2020.00048/FULL

Wang, S., Su, S., Xiao, L. P., Wang, B., Sun, R. C., & Song, G. (2020). Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization. ACS Sustainable Chemistry and Engineering, 8(18), 7031–7038. https://doi.org/10.1021/ACSSUSCHEMENG.0C00462

Wang, Y., Wei, X., Li, J., Wang, F., Wang, Q., Zhang, Y., & Kong, L. (2017). Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Industrial Crops and Products, 104, 237–241. https://doi.org/10.1016/j.indcrop.2017.04.032

WIBOWO, N. A., & ISROI, . (2016). Potensi In-Vivo Selulosa Bakterial Sebagai Nano-Filler Karet Elastomer Thermoplastics. Perspektif, 14(2), 103. https://doi.org/10.21082/p.v14n2.2015.103-112

Wicaksono, R., Wibowo, C., & Fajar, R. (2021). APLIKASI SERAT NANOSELULOSA DARI KULIT UBI KAYU SEBAGAI BAHAN PENGISI DAN PENGARUHNYA TERHADAP SIFAT FISIK BIOPLASTIK TAPIOKA DENGAN PENAMBAHAN SORBITOL. Prosiding, 10(1). http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/view/1480

Widiastuti, E., & Marlina, A. (2020). Studi Awal Pembuatan Nano Serat Selulosa Alang-Alang (Imperata Cylindrical (L) Beauv) Sebagai Bahan Pengikat Komposit. Prosiding Industrial Research Workshop and National Seminar, 11(1), 682–686. https://doi.org/10.35313/IRWNS.V11I1.2098

Wu, M., Gong, L., Ma, C., & He, Y. C. (2021). Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresource Technology, 340, 125695. https://doi.org/10.1016/J.BIORTECH.2021.125695

Xu, C., Arancon, R. A. D., Labidi, J., & Luque, R. (2014). Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chemical Society Reviews, 43(22), 7485–7500. https://doi.org/10.1039/c4cs00235k

Yang, B., Zhang, S., Hu, H., Duan, C., He, Z., & Ni, Y. (2020). Separation of hemicellulose and cellulose from wood pulp using a ?-valerolactone (GVL)/water mixture. Separation and Purification Technology, 248, 117071. https://doi.org/10.1016/J.SEPPUR.2020.117071

YUDHA, V. (2018). Fabrikasi Film Nanokomposit berbasis PVA dan Nanoselulosa dari Serat Pelepah Salak. http://etd.repository.ugm.ac.id/penelitian/detail/166368

Zhou, Y. M., Fu, S. Y., Zheng, L. M., & Zhan, H. Y. (2012). Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polymer Letters, 6(10), 794–804. https://doi.org/10.3144/expresspolymlett.2012.85