POTENSI KOMBUCHA DAUN TEH (Camellia sinensis) DAN DAUN KOPI ROBUSTA (Coffea robusta) SEBAGAI MINUMAN PROBIOTIK
Main Article Content
Abstract
Kombucha is a plant-based fermented beverage that contains probiotic bacteria such as lactic acid bacteria (LAB). This research was conducted to prove the potential of probiotics in LAB isolates of kombucha tea leaves and robusta coffee leaves with various concentrations. This research used a completely randomized design (CRD). The variables tested were the measurement of total lactic acid bacteria, total acid, and probiotic characterization of LAB isolates (LAB resistance to low pH and bile salts, and antibacterial activity test). The results were analyzed and discussed using ANOVA with a significance level of P < 0.05 only for total acid and descriptive analysis on microbiological response. The best probiotic potency was selected using the multiple attribute method. The results showed that LAB isolates from kombucha tea leaves and robusta coffee leaves with various concentrations had resistance to pH 2 and pH 3, resistance to bile salts 3%, and antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria. The LAB isolate of kombucha robusta coffee leaves at a concentration of 0.6% has the best probiotic potential.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Ambrosio CMS, de Alencar SM, de Sousa RLM, Moreno AM, Da Gloria EM (2017) Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crop Prod 97: 128–136. doi: 10.1016/j.indcrop.2016.11.045
Azka ABF, Santriadi MT, Kholis MN (2018) Pengaruh konsentrasi garam dan lama fermentasi terhadap sifat kimia dan organoleptik kimchi. Agroindustrial Technol J 2: 91–97. doi: 10.21111/atj.v2i1.2818
Bustos AY, Raya R, de Valdez GF, Taranto MP (2011) Efflux of bile acids in Lactobacillus reuteri is mediated by ATP. Biotechnol Lett 33: 2265–2269. doi: 10.1007/s10529-011-0696-3
Cavicchioli VQ, Dornellas W dos S, Perin LM, Pieri FA, Franco BD, Todorov SD, Nero LA (2015) Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk. Appl Biochem Biotechnol 175: 2806–2822. doi: 10.1007/s12010-015-1511-8
Chen L, Song Z, Tan SY, Zhang H, Yuk HG (2020) Application of bacteriocins produced from lactic acid bacteria for microbiological food safety. Curr Top Lact Acid Bact Probiotics 6: 1–8. doi: 10.35732/ctlabp.2020.6.1.1
Fibrianto K, Zubaidah E, Muliandari NA, Wahibah LY, Putri SD, Legowo A, Al-Baarri AN (2020) Antioxidant activity optimisation of young Robusta coffee leaf kombucha by modifying fermentation time and withering pre-treatment. IOP Conf Ser: Earth Environ Sci 475: 012029. doi: 10.1088/1755-1315/475/1/012029
Fujimura S, Watanabe A, Kimura K, Kaji M (2012) Probiotic mechanism of Lactobacillus gasseri OLL2716 strain against Helicobacter pylori. J Clin Microbiol 50: 1134–1136. doi: 10.1128/JCM.06262-11
Gänzle MG (2015) Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2: 106–117. doi: 10.1016/j.cofs.2015.03.001
García-Ruiz A, González de Llano D, Esteban-Fernández A, Requena T, Bartolomé B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44: 220–225. doi: 10.1016/j.fm.2014.06.015
Hrnjez D, Vaštag Z, Milanovi? S, Vuki? V, Ili?i? M, Popovi? L, Kanuri? K (2014) The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. J Funct Foods 10: 336–345. doi: 10.1016/j.jff.2014.06.016
Islam R, Hossain MN, Alam MK, Uddin ME, Rony MH, Imran MAS, Alam MF (2020) Antibacterial activity of lactic acid bacteria and extraction of bacteriocin protein. Adv Biosci Biotechnol 11: 49–59. doi: 10.4236/abb.2020.112004
Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim HS, Seo KH (2017) Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control 78: 436–442. doi: 10.1016/j.foodcont.2017.02.033
König H, Unden G, Fröhlich J (2017) Biology of Microorganisms on Grapes, in Must and in Wine. Springer Int Pub,Switzerland. doi: 10.1007/978-3-319-60021-5
Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, De Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P (2011) Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics 10: 110.002741. doi: 10.1074/mcp.M110.002741
Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012: 902917. doi: 10.1155/2012/902917
Kusuma GSP, Fibrianto K (2018) Pengaruh optimasi lama fermentasi terhadap karakteristik kombucha daun tua kopi robusta Dampit metode oksidatif dan non-oksidatif. J Pangan Agroindustri 6: 87–97. doi: 10.21776/ub.jpa.2018.006.04.10
Laureys D, Britton SJ, De Clippeleer J (2020) Kombucha tea fermentation: A review. J Am Soc Brew Chem 78: 165–174. doi: 10.1080/03610470.2020.1734150
Leite AMO, Miguel MAL, Peixoto RS, Ruas-Madiedo P, Paschoalin VMF, Mayo B, Delgado S (2015) Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J Dairy Sci 98: 3622–3632. doi: 10.3168/jds.2014-9265
Noriko N (2013) Potensi daun teh (Camellia sinensis) dan daun anting-anting Acalypha indica L. dalam menghambat pertumbuhan Salmonella typhi. J Al-Azhar Indones Ser Sains Teknol 2: 104-110. doi: 10.36722/sst.v2i2.131
Novita R, Kasim A, Anggraini T, Putra DP (2018) Kahwa daun: traditional knowledge of a coffee leaf herbal tea from West Sumatera, Indonesia. J Ethnic Foods 5: 286–291. doi: 10.1016/j.jef.2018.11.005
Nur YM, Indrayati S, Periadnadi, Nurmiati (2018) Pengaruh penggunaan beberapa jenis ekstrak tanaman beralkaloid terhadap produk teh kombucha. J Biol Univ Andalas 6: 55–62. doi: 10.25077/jbioua.6.1.55-62.2018
Palareti G, Legnani C, Cosmi B, Antonucci E, Erba N, Poli D, Testa S, Tosetto A (2016) Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int J Lab Hem 38: 42–49. doi: 10.1111/ijlh.12426
Patel AK, Singhania RR, Pandey A, Chincholkar SB (2010) Probiotic bile salt hydrolase: Current developments and perspectives. Appl Biochem Biotechnol 162: 166–180. doi: 10.1007/s12010-009-8738-1
Pinto L, Malfeito-Ferreira M, Quintieri L, Silva AC, Baruzzi F (2019) Growth and metabolite production of a grape sour rot yeast-bacterium consortium on different carbon sources. Int J Food Microbiol 296: 65–74. doi: 10.1016/j.ijfoodmicro.2019.02.022
Puspawati NN, Arihantana NMIH (2016) Viability of lactic acid bacteria isolated from kombucha tea against low pH and bile salt ketahanan bakteri asam laktat yang diisolasi dari teh kombucha terhadap pH rendah dan garam empedu. Media Ilmiah Teknologi Pangan 3(1): 18–25
Sabel A, Bredefeld S, Schlander M, Claus H (2017) Wine phenolic compounds: Antimicrobial properties against yeasts, lactic acid and acetic acid bacteria. Beverages 3: 29. doi: 10.3390/beverages3030029
Saguibo JD, Mercado MA, Maldia ST, Jimeno BT, Perez MTM, Calapardo MR, Elegado FB (2019) Identification and characterization of lactic acid bacteria isolated from some medicinal and/or edible Philippine plants. Food Res 3: 698–712. doi: 10.26656/fr.2017.3(6).148
Sengun IY, Kirmizigul A (2020) Probiotic potential of kombucha. J Functional Foods 2020: 104284. doi: 10.1016/j.jff.2020.104284
Shang YF, Cao H, Ma YL, Zhang C, Ma F, Wang CX, Ni XL, Lee WJ, Wei ZJ (2019) Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits. Food Chem 274: 118–122. doi: 10.1016/j.foodchem.2018.08.120
Shehata MG, El Sohaimy SA, El-Sahn MA, Youssef MM (2016) Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann Agric Sci 61: 65–75. doi: 10.1016/j.aoas.2016.03.001
Sudarmaji S, Haryono B (1997) Prosedur Analisa Bahan Makanan dan Pertanian. Liberty, Yogyakarta
Šuškovi? J, Kos B, Beganovi? J, Pavunc AL, Habjani? K, Mato? S (2010) Antimicrobial activity - The most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol 48: 296–307
Tan SL, Lee HY, Mahyudin NA (2014) Antimicrobial resistance of Escherichia coli and Staphylococcus aureus isolated from food handler’s hands. Food Control 44: 203–207. doi: 10.1016/j.foodcont.2014.04.008
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P (2018) Understanding kombucha tea fermentation: A review. J Food Sci 83: 580–588. doi: 10.1111/1750-3841.14068
Wang M, Gao Z, Zhang Y, Pan L (2016) Lactic acid bacteria as mucosal delivery vehicles?: A realistic therapeutic option. Appl Microbiol Biotechnol 100: 5691–5701. doi: 10.1007/s00253-016-7557-x
Wang Y, Wang J, Bai D, Wei Y, Sun J, Luo Y, Zhao J, Liu Y, Wang Q (2020) Synergistic inhibition mechanism of pediocin PA-1 and L-lactic acid against Aeromonas hydrophila. Biochim Biophys Acta Biomembr 1862: 183346. doi: 10.1016/j.bbamem.2020.183346
Zeleny M (1982) Multiple Criteria Decision Making. McGraw Hill, New York