ANALISIS KOMPARATIF MINERAL MIKRO DAN ANTI NUTRISI PADA BERAS ANTARA PADI REKAYASA GENETIK DAN TETUANYA

Main Article Content

Maggy Thenawidjaja Suhartono

Abstract


Comparative analysis is important aspect in food safety of transgenic crops to determine the effect of transgene on nutritional and anti-nutritional contents. This research was aimed to determine the concentration of Fe, Zn, phytic acid, and anti-trypsin activity, then assess the equivalence between transgenic rice and non-transgenic rice. Fe and Zn concentration was carried out using energy-dispersive x-ray fluorescence spectrometry. Anti-nutritional phytic acid and anti-trypsin activity were performed using visible light spectrophotometry. The data obtained were statistically tested using Independent sample t-test. These results indicated that the concentration of Fe, Zn, phytic acid, and anti-trypsin activity in 6 transgenic rice events were equivalent to non-transgenic rice. In conclusion, the transgene did not affect Fe, Zn, phytic acid, and anti-trypsin activities in brown rice of 6 transgenic rice events carrying cry1B::cry1Aa fusion genes.




Analisis komparatif adalah salah satu aspek penting dalam keamanan pangan tanaman produk rekayasa genetik (PRG) untuk mengetahui pengaruh transgen terhadap kandungan nutrisi dan anti nutrisi. Pada penelitian ini dilakukan analisis komparatif konsentrasi mineral mikro Fe, Zn, asam fitat, dan aktivitas anti tripsin pada beras pecah kulit dari 6 galur padi PRG pembawa fusi gen cry1B::cry1Aa terhadap padi non-PRG Rojolele tetuanya. Analisis konsentrasi mineral mikro Fe dan Zn menggunakan metode energy-dispersive x-ray fluorescence spectrometry (ED-XRF) dengan 3 ulangan. Analisis konsentrasi anti nutrisi asam fitat dan aktivitas anti tripsin dilakukan menggunakan metode spektrofotometri sinar tampak dengan 8 ulangan. Data yang diperoleh diuji secara statistik menggunakan Independent sample t-test. Hasil yang diperoleh menunjukkan konsentrasi mineral mikro Fe, Zn, asam fitat, dan aktivitas anti tripsin pada beras dari 6 galur padi PRG pembawa fusi gen cry1B::cry1Aa setara dengan padi non-PRG Rojolele tetuanya. Kesimpulannya bahwa transgen tidak mempengaruhi kandungan mineral mikro Fe, Zn, asam fitat, dan aktivitas anti tripsin pada beras dari 6 galur padi PRG pembawa fusi gen cry1B::cry1Aa.


Article Details

How to Cite
Suhartono, M. T. (2023). ANALISIS KOMPARATIF MINERAL MIKRO DAN ANTI NUTRISI PADA BERAS ANTARA PADI REKAYASA GENETIK DAN TETUANYA . Jurnal Bioteknologi Dan Biosains Indonesia, 8(2), 220–229. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1802
Section
Articles

References

Adenle AA, Morris EJ, Murphy DJ (2017) Genetically Modified Organisms in Developing Countries?: Risk Analysis and Governance. 306 p. Cambridge University Press, New York. doi: 10.1017/9781316585269

Brune P, Chakravarthy S, Graser G, Mathesius CA, McClain S, Petrick JS, Sauve-Ciencewicki A, Schafer B, Silvanovich A, Brink K, Burgin K, Bushey D, Cheever ML, Edrington T, Fu H, Habex V, Herman R, Islamovic E, Lipscomb EA, Motyka S, Privalle L, Ranjan R, Roper J, Song P, Tilton G, Zhang J, Waters S, Ramos A, Culler AH, Hunst P, Gast R, Mahadeo D, Goodwin L (2021) Core and supplementary studies to assess the safety of genetically modified (GM) plants used for food and feed. J Regul Sci 9: 45–60. doi: 10.21423/jrs-v09i1brune

Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Laxmi Narasu VM, Udayasuriyan V, Rana D (2016) Transgenic rice expressing the cry2AX1 gene confers resistance to multiple Lepidopteran pests. Transgenic Res 25: 665–678. doi: 10.1007/s11248-016-9954-4

Choi H, Moon J-K, Park B-S, Park H-W, Park S-Y, Kim T-S, Kim D-H, Ryu T-H, Kweon S-J, Kim J-H (2012) Comparative nutritional analysis for genetically modified rice, Iksan483 and Milyang204, and nontransgenic counterparts. J Korean Soc Appl Biol Chem 55:19–26. doi: 10.1007/s13765-012-0004-5

Davies NT, Reid H (1979) An evaluation of the phytate, zinc, copper, iron and manganese contents of, and Zn availability from, soya-based textured-vegetable-protein meat-substitutes or meat-extenders. Br J Nutr 41: 579–589. doi: 10.1079/BJN19790073

Delaney B (2015) Safety assessment of foods from genetically modified crops in countries with developing economies. Food Chem Toxicol 86: 132–143. doi: 10.1016/J.FCT.2015.10.001

Domingo JL (2016) Safety assessment of GM Plants: An updated review of the scientific literature. Food Chem Toxicol 95: 12–18. doi: 10.1016/j.fct.2016.06.013

Dutta SS, Das S, Pale G, Iangrai B, Aochen C, Rai M, Pattanayak A (2016) Current status and future prospects of research on genetically modified rice: A Review. Agric Rev 37: 10–18. doi: 10.18805/AR.V37I1.9259

Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21: 382–386. doi: 10.1177/156482650002100407

Hamerstrand GE, Black LT, Glover JD (1981) Trypsin inhibitors in soy products: Modification of the standard analytical procedure. Cereal Chem 58: 42–45

Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, Athulya R, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS (2021) The draft genome of yellow stem borer, an agriculturally important pest, provides molecular insights into its biology, development and specificity towards rice for infestation. Insects 12: 563. doi: 10.3390/INSECTS12060563

Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: Current status and future prospects. Planta 251: 91. doi: 10.1007/s00425-020-03372-8

Li X, Huang K, He X, Zhu B, Liang Z, Li H, Luo Y (2007) Comparison of nutritional quality between chinese indica rice with sck and cry1Ac genes and its nontransgenic counterpart. J Food Sci 72: S420–S424. doi: 10.1111/j.1750-3841.2007.00416.x

Liang J, Han BZ, Han L, Nout MJR, Hamer RJ (2007) Iron, zinc and phytic acid content of selected rice varieties from China. J Sci Food Agric 87: 504–510. doi: 10.1002/jsfa.2747

Loutfi H, Fayad N, Pellen F, Le Jeune B, Chakroun M, Benfarhat D, Lteif R, Kallassy M, Le Brun G, Abboud M (2021) Morphological study of Bacillus thuringiensis crystals and spores. Appl Sci 11: 155. doi: 10.3390/app11010155

Manikam NR (2021) Known facts: Iron deficiency in Indonesia. World Nutr J 5: 1–9. doi: 10.25220/wnj.v05.s1.0001

Manikandan R, Balakrishnan N, Sudhakar D, Udayasuriyan V (2016) Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis). 3 Biotech 6: 10. doi: 10.1007/s13205-015-0315-4

Nugroho S, Sari DI, Zahra F, Rachmawati S, Maulana BS, Estiati A (2020) Resistant performance of T10 Rojolele transgenic rice events harboring cry1B::cry1Aa fusion genes against the rice yellow stem borer Scirpophaga incertulas Wlk. In: IOP Conf Ser: Earth Environ Sci 762: 012067. doi: 10.1088/1755-1315/762/1/012067

OECD (2016) Revised consensus document on compositional considerations for new varieties of rice (Oryza sativa): Key food and feed nutrients, anti-nutrients and other constituents. No. 28. Series on the Safety of Novel Foods and Feeds. Organisation for Economic Co-operation and Development, Paris

Paltridge NG, Palmer LJ, Milham PJ, Guild GE, Stangoulis JCR (2012) Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361: 251–260. doi: 10.1007/s11104-011-1104-4

Park SY, Lee SM, Lee JH, Ko HS, Kweon SJ, Suh SC, Shin KS, Kim JK (2012) Compositional comparative analysis between insect-resistant rice (Oryza sativa L.) with a synthetic cry1Ac gene and its non-transgenic counterpart. Plant Biotechnol Rep 6: 29–37. doi: 10.1007/s11816-011-0192-1

Peralta C, Palma L (2017) Is the insect world overcoming the efficacy of Bacillus thuringiensis? Toxins 9: 39. doi: 10.3390/TOXINS9010039

Qin Y, Ahn H-I, Park S-Y, Lim M-H, Woo H-J, Shin K-S, Lee J-H, Cho H-S, Baek S-H, Park S-K, Kweon S-J (2014) T-DNA inheritance stability of resveratrol rice Iksan526 over multi-generations. Plant Breed Biotechnol 2: 268–275. doi: 10.9787/PBB.2014.2.3.268

Renuka P, Madhav MS, Padmakumari AP, Barbadikar KM, Mangrauthia SK, Sudhakara Rao KV, Marla SS, Babu VR (2017) RNA-seq of rice yellow stem borer Scirpophaga incertulas reveals molecular insights during four larval developmental stages. G3: Genes, Genomes, Genet 7: 3031–3045. doi: 10.1534/g3.117.043737

Rohaeni WR, Susanto U (2021) Fe and Zn content of various genetic background of released rice varieties in Indonesia. IOP Conf Ser: Earth Environ Sci 752: 012057. doi: 10.1088/1755-1315/752/1/012057

Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod Process and Nutr 2: 6 (2020). doi: 10.1186/s43014-020-0020-5

Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 128: 1583–1594. doi: 10.1111/jam.14506

Stelle I, Kalea AZ, Pereira DIA (2019) Iron deficiency anaemia: Experiences and challenges. Proc Nutr Soc 78: 19–26. doi: 10.1017/S0029665118000460

Ulum MB (2021) Regulating biosafety of genetically modified crops in Indonesia: Limits and challenges. UUM J Legal Studies 12: 157–177. doi: 10.32890/uumjls2021.12.1.7

Wang R, Guo S (2021) Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 20: 2081–2105. doi: 10.1111/1541-4337.12714

Wang Y, Xu W, Zhao W, Hao J, Luo Y, Tang X, Zhang Y, Huang K (2012) Comparative analysis of the proteomic and nutritional composition of transgenic rice seeds with Cry1ab/ac genes and their non-transgenic counterparts. J Cereal Sci 55: 226–233. doi: 10.1016/j.jcs.2011.12.004

Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7: e50568. doi: 10.1371/journal.pone.0050568

Yalcin S, Basman A (2015) Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chem 169: 203–210. doi: 10.1016/j.foodchem.2014.07.114