A GLUTARIMIDE FROM THE INDONESIAN MARINE CYANOBACTERIUM Oscillatoria sp.
Main Article Content
Abstract
In continuous concern of marine resources relating to molecular structures that have biological activity around the western part of the Indonesian Archipelago, a marine cyanobacterium species Oscillatoria sp. was found in Sabang Island, Aceh. This study aimed at investigating the chemical and biological contents of Oscillatoria sp. The isolation of the target molecule was carried out based on bioassay-guided separation with several steps of chromatography. In addition, the evaluation of bioactivity was determined by the MTT assay protocol against the human pancreatic cancer Panc-1 cell line. The planar structure of the target molecule was determined by spectroscopic analysis. Results showed that the whole planar structure was identified as cycloheximide-4-acetate (1), a cycloimide class of molecule. Moreover, the relative stereochemistry was confirmed by nuclear overhauser effect (NOE) analysis. Therefore, the molecule was assigned as (2S*,4S*,6S*,7R*)-cycloheximide-4-acetate. The cytotoxicity evaluation of compound 1 showed IC50 value of 0.32 mM against the human pancreatic cancer cell.
Dalam perhatian berkelanjutan terhadap sumber daya laut yang berkaitan dengan struktur molekul yang memiliki aktivitas biologis di sekitar bagian barat Kepulauan Indonesia, spesies sianobakteria Oscillatoria sp. ditemukan di Pulau Sabang, Aceh. Penelitian ini bertujuan melakukan investigasi kandungan kimiawi dan biologis dari Oscillatoria sp. Isolasi molekul target dilakukan melalui metode pemisahan berdasarkan uji bioaktivitas dengan menggunakan beberapa tahapan kromatografi. Selain itu, evaluasi bioaktivitas ditentukan oleh protokol uji MTT terhadap sel kanker manusia Panc-1. Struktur planar dari molekul target ditentukan dengan analisis spektroskopi. Hasilnya, struktur planar dari senyawa target diidentifikasi sebagai sikloheksimida-4-asetat (1), kelompok molekul sikloimida. Selanjutnya, relatif stereokimia dikonfirmasi oleh analisis nuclear overhauser effect (NOE). Oleh karena itu, molekul tersebut ditetapkan sebagai (2S*,4S*,6S*,7R*)-sikloheksimida-4-asetat. Evaluasi sitotoksisitas pada senyawa 1 menunjukkan nilai IC50 sebesar 0.32 mM terhadap sel kanker pankreas.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Arai M, Kamiya K, Pruksakorn P, Sumii Y, Kotoku N, Joubert J-P, Moodley P, Han C, Shin D, Kobayashi M (2015) Anti-dormant mycobacterial activity and target analysis of nybomycin produced by a marine-derived Streptomyces sp. Bioorg Med Chem 23: 3534-3541. doi: 10.1016/j.bmc.2015.04.033
Carpine R, Sieber S (2021) Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. Curr Res Biotechnol 3: 65-81. doi: 10.1016/j.crbiot.2021.03.001
Demay J, Bernard C, Reinhardt A, Marie, B (2019) Natural products from cyanobacteria: Focus on beneficial activities. Mar Drugs 17: 320. doi: 10.3390/md17060320
do Amaral SC, Monteiro PR, Neto JDSP, Serra GM, Gonçalves EC, Xavier LP, Santos AV (2021) Current knowledge on microviridin from cyanobacteria. Mar Drugs 19: 17. doi: 10.3390/md19010017
Geitler L (1932) Cyanophyceae. In: Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Rabenhorst L (Ed) Ed 2 Vol 14, pp. 673-1196. Akademische Verlagsgesellschaft, Leipzig
Gogineni V, Hamann MT (2018) Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim Biophys Acta 1862: 81–196. doi: 10.1016/j.bbagen.2017.08.014
Govindan K, Lin WY (2021) Ring opening/site selective cleavage in N-acyl glutarimide to synthesize primary amides. Org Lett 23: 1600-1605. doi: 10.1021/acs.orglett.1c00010
Herr RR (1959) Structures of the Streptovitacins. J Am Chem Soc 81: 2595-2596. doi: 10.1021/ja01519a077
Jiang L, Huang P, Ren B, Song Z, Zhu G, He W, Zhang J, Oyeleye A, Dai H, Zhang L, Liu X (2021) Antibacterial polyene-polyol macrolides and cyclic peptides from the marine-derived Streptomyces sp. MS110128. Appl Microbiol Biotechnol 105: 4975-4986. doi: 10.1007/s00253-021-11226-w
Khairunnisa, Kurnianda V (2017) Bioactivity from Indonesian’s marine sponge Xestospongia sp. as antibacterial resistance Escherichia coli. Nat Prod Chem Res 5: 1000265. doi: 10.4172/2329-6836.1000265
Khalifa SAM, Shedid ES, Saied EM, Jassbi AR, Jamebozorgi FH, Rateb M, Du M, Abdel-Daim MM, Kai GY, Al-Hammady MA, Xiao J, Guo Z, El-Seedi HR (2021) Cyanobacteria—From the oceans to the potential biotechnological and biomedical applications. Mar Drugs 19: 241. doi: 10.3390/md19050241
Kurnianda V, Faradilla S, Karina S, Agustina S, Ulfah M, Octavina C, Syahliza F, Ramadhan MR, Purnawan S Musman M (2019) Polyoxygenated diterpene produced by the Indonesian marine sponge Callyspongia sp. as an inhibitor of the human pancreatic cancer cells. Microbiol Indones 13: 70-74. doi: 10.5454/mi.13.2.5
Mane PC, Sayyed SAR, Kadam DD, Shinde MD, Fatehmulla A, Aldhafiri AM, Alghamdi EA, Amalnerkar DP, Chaudhari RD (2021) Terrestrial snail-mucus mediated green synthesis of silver nanoparticles and in vitro investigations on their antimicrobial and anticancer activities. Sci Rep 11: 13068. doi: 10.1038/s41598-021-92478-4
Martínez-Francés E, Escudero-Oñate C (2018) Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnol 6: 104-128. doi: 10.5772/intechopen.74043
Mazur-Marzec H, Ceg?owska M, Konkel R, Pyr? K (2021) Antiviral cyanometabolites—A review. Biomolecules 11: 474. doi: 10.3390/biom11030474
Moghaddam HS, Shahnavaz B, Makhdoumi A Iranshahy M (2021) Evaluating the effect of various bacterial consortia on antibacterial activity of marine Streptomyces sp. AC117. Biocontrol Sci Technol 31: 1-19. doi: 10.1080/09583157.2021.1940865
Mutalipassi M, Riccio G, Mazzella V, Galasso C, Somma E, Chiarore A, de Pascale D, Zupo V (2021) Symbioses of Cyanobacteria in marine environments: Ecological insights and biotechnological perspectives. Mar Drugs 19: 227. doi: 10.3390/md19040227
Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, Green R, Shen B, Liu JO (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6: 209-217. doi: 10.1038/nchembio.304
WHO (2017) Global Health Observatory, World Health Organization. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/world-health-statistics. Accessed 12 April 2017
Zhang D, Yi W, Ge H, Zhang Z, Wu B (2019) Bioactive streptoglutarimides A–J from the marine-derived Streptomyces sp. ZZ741. J Nat Prod 82: 2800-2808. doi: 10.1021/acs.jnatprod.9b00481