PENINGKATAN PRODUKSI BIOMASSA SEBAGAI STRATEGI JITU DALAM MEMPERCEPAT PRODUKSI BIODIESEL BERBASIS MIKROALGA DI INDONESIA
Main Article Content
Abstract
Microalgae have been widely known possessing excellent characteristics to be used as biodiesel feedstock on the commercial-scale production level. However, microalgal biodiesel is still not economically feasible to be mass-scale produced due to its high price compared to the fossil-based diesel. Therefore, many efforts have to be conducted in order to increase its feasibility. One of accurate ways to solve its constraint is maximizing the production of microalgal biomass which will increase its lipid and biodiesel productivity. The optimization of microalgal biomass production process could be conducted against the four main cultivation parameters, namely carbon dioxide (CO2) supplementation, growth medium composition, cultivation environmental condition, and growth factors/hormones addition. The operational of microalgal cultivation by applying the optimum value will maximize its biomass production which will eventually increase its biodiesel productivity. This review specifically discusses the aforementioned parameters, including its essential role and the way on how to optimize those parameters in gaining maximum microalgal biomass production.
Mikroalga diketahui memiliki karakteristik unggul sebagai bahan baku potensial dalam produksi biodiesel skala komersial. Namun, hal itu masih terbentur oleh tingginya harga produksi bila dibandingkan dengan bahan bakar diesel berbasis fosil. Oleh karena itu, berbagai upaya untuk meningkatkan kelayakan ekonominya harus dilakukan. Salah satu langkah jitu dalam memecahkan permasalahan tersebut adalah memaksimalkan produksi biomassa mikroalga, sehingga produktivitas lipid dan produktivitas biodiesel dapat meningkat. Optimasi produksi biomassa mikroalga dilakukan terhadap empat parameter utama kultivasi, seperti suplementasi karbon dioksida (CO2), komposisi media pertumbuhan, optimasi kondisi lingkungan dan penambahan faktor/hormon pertumbuhan. Operasional kultivasi mikroalga pada kondisi optimal akan memaksimalkan produksi biomassanya hingga akhirnya dapat mencapai produktivitas biodiesel yang maksimal. Artikel tinjauan ini secara khusus membahas keempat parameter tersebut di atas, termasuk perannya dalam kultivasi mikroalga serta bagaimana mengoptimalkannya agar dapat menghasilkan biomassa yang maksimal.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abid A, Saidane F, Hamdi M (2017) Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor. Bioresour Technol 234: 297–302. doi: 10.1016/j.biortech.2017.03.041
Acién FG, Fernández-Sevilla JM, Grima EM (2016) Supply of CO2 to closed and open photobioreactors. pp 225–252. In: Slocombe SP, Benemann JR (Eds). Microalgal Production for Biomass and High-Value Products. 1st edition. CRC Press, Florida
Aghaalipour E, Akbulut A, Güllü G (2020) Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. Biochem Eng J 163: 107741. doi: 10.1016/j.bej.2020.107741
Ahuja S, Roy A, Kumar L, Bharadvaja N (2020) Media optimization using Box Behnken design for enhanced production of biomass, beta?carotene and lipid from Dunaliella salina. Int J Plant Res 33: 31–39. doi: 10.1007/s42535-019-00079-4
Alabi AO, Tampier M, Bibeau E (2009) Microalgae technologies and process for Biofuels/Bio energy production in British Columbia: Current technology, suitability and barriers to implementation. A report submitted to British Columbia innovation Council by Seed science. pp 1–88
Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress?: An overview of molecular responses in photosynthesis. Photosynth Res 98: 541–550. doi: 10.1007/s11120-008-9331-0
Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol 139: 149–154. doi: 10.1016/j.biortech.2013.04.032
Anuradha S, Thadikamala S, Harish BS, Gayathri G, Thulasidharan D, Uppuluri KB (2021) Open system for the autotrophic cultivation of Scenedesmus obliquus NCIM 5586: Multiobjective optimization for the tradeoff between biomass and lipid. Biomass Conv Bioref Jan 2021. doi: 10.1007/s13399-021-01283-6
Arora S, Mishra G (2021) Effect of gibberellin, methyl jasmonate and myoinositol on biomass and eicosapentaenoic acid productivities in the eustigmatophyte Monodopsis subterranea CCALA 830. J Appl Phycol 33:287–299. doi: 10.1007/s10811-020-02317-8
Ashokkumar V, Rengasamy R (2012) Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour Technol 104: 394–399. doi: 10.1016/j.biortech.2011.10.093
Assunçao J, Malcata FX (2020) Enclosed “non-conventional” photobioreactors for microalga production: A review. Algal Res 52: 102107. doi: 10.1016/j.algal.2020.102107
Assunçao J, Guedes AC, Malcata FX (2017) Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from Dinoflagellates. Mar Drugs 15: 393. doi: 10.3390/ md15120393
Banerjee A, Guria C, Maiti SK, Banerjee C, Shukla P (2019) Carbon bio-fixation, effect of physicochemical factors and carbon supply strategies by Nannochloropsis sp. using flue gas and fertilizer. Biomass and Bioenergy 125: 95–104. doi: 10.1016/j.biombioe.2019.04.002
Banu JR, Preethi, Kavitha S, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302: 122822. doi: 10.1016/j.biortech.2020.122822
Barahoei M, Hatamipour MS, Afsharzadeh S (2020) CO2 capturing by Chlorella vulgaris in a bubble column photo-bioreactor: Effect of bubble size on CO2 removal and growth rate. J CO2 Util 37: 9–19. doi: 10.1016/j.jcou.2019.11.023
Barten RJP, Wijffels RH, Barbosa MJ (2020) Bioprospecting and characterization of temperature tolerant microalgae from Bonaire. Algal Res 50: 102008. doi: 10.1016/j.algal.2020.102008
Becker EW (1994) Microalgae: Biotechnology and Microbiology. 1st Edition. Cambridge University Press, Cambridge
Benemann JR (2008) Open ponds and closed photobioreactors: Comparative economics [PowerPoint presentation]. 5th Annual World Congress on Industrial Biotechnology & Bioprocessing, 30 April 2008. Chicago, United States
Bernard O, Rémond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 123: 520–527. doi: 10.1016/j.biortech.2012.07.022
Borowitzka MA (1992) Algal biotechnology products and processes — matching science and economics. J Appl Phycol 4: 267–279. doi: 10.1007/BF02161212
Branco-Vieira M, Mata TM, Martins AA, Freitas MAV, Caetano NS (2020) Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Rep 6: 325–332. doi: 10.1016/j.egyr.2020.11.156
Carbajal EMT, Hernandez EM, Linares LF, Maldonado EN, Ballesteros RL (2020) Techno-economic analysis of Scenedesmus dimorphus microalgae biorefinery scenarios for biodiesel production and glycerol valorization. Bioresour Technol Rep 12: 100605. doi: 10.1016/j.biteb.2020.100605
Cepák V, Pribyl P, Kohoutková J, Kastanek P (2014) Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol 26: 181–190. doi: 10.1007/s10811-013-0119-z
Chang JS, Show PL, Ling TC, Chen CY, Ho SH, Tan CH, Nagarajan D, Phong WN (2017) Photobioreactors, In: Larroche C, Sanrom´an MA, Du G, Pandey A (Eds.). Current elopementent in Biotechnology and Bioengineering: Bioprocesses: Bioreactors and Control. Pp. 313–352. Elsevier. doi: 10.1016/B978-0-444-63663-8.00011-2
Chen G, Fan KW, Lu FP, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N Biotechnol 27: 382–389. doi: 10.1016/j.nbt.2010.04.005
Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY (2018) The potential of microalgae in biodiesel production. Renew Sustain Energy Rev 90: 336–346. doi: 10.1016/j.rser.2018.03.073
Cheng J, Li K, Yang Z, Lu H, Zhou J, Cen K (2016) Gradient domestication of Haematococcus pluvialis mutant with 15% CO2 to promote biomass growth and astaxanthin yield. Bioresour Technol 216: 340–344. doi: 10.1016/j.biortech.2016.05.095
Cheng J, Lu H, He X, Yang W, Zhou J, Cen K (2017) Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas. Bioresour Technol 238: 650–656. doi: 10.1016/j.biortech.2017.04.107
Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26: 126–131. doi: 10.1016/j.tibtech.2007.12.002
Choix FJ, Polster E, Corona-Gonzales RI, Snell-Castro R, Mendez-Acosta HO (2017) Nutrient composition of culture media induces different patterns of CO2 fixation from biogas and biomass production by the microalga Scenedesmus obliquus U169. Bioprocess Biosyst Eng 40: 1733–1742. doi: 10.1007/s00449-017-1828-5
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48: 1146–1151. doi: 10.1016/j.cep.2009.03.006
Daneshvar E, Ok YS, Tavakoli S, Sarkar B, Shaheen SM, Hong H, Luo Y, Rinklebe J, Song H, Bhatnagar A (2021) Insights into upstream processing of microalgae: A review. Bioresour Technol 329: 124870. doi: 10.1016/j.biortech.2021.124870
Dani N, Zare D, Assadi MM, Irani S, Soltani N (2021) Isolation, screening and medium optimization of native microalgae for lipid production using nutritional starvation strategy and statistical design. Int J Environ Sci Technol 18: 2997–3012. doi: 10.1007/s13762-020-03037-9
Dao G, Wang S, Wang X, Chen Z, Wu Y, Wu G, Lu Y, Liu S, Hu H (2020) Enhanced Scenedesmus sp. growth in response to gibberellin secretion by symbiotic bacteria. Sci Total Environ 740: 140099. doi: 10.1016/j.scitotenv.2020.140099
Dao G, Wu G, Wang X, Zhuang L, Zhang T, Hu H (2018) Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresour Technol 247: 561–567. doi: 10.1016/j.biortech.2017.09.079
Dasan YK, Lam MK, Yusup S, Lim JW, Show PL, Tan IS, Lee KT (2020) Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: A stress-inducing strategy for lipid accumulation and carbon dioxide fixation. J CO2 Util 41: 101226. doi: 10.1016/j.jcou.2020.101226
Dasgupta CN, Gilbert JJ, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35: 10218–10238. doi: 10.1016/j. ijhydene.2010.06.029
Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88: 3524–3531. doi: 10.1016/j.apenergy.2011.04.018
Duarte-Santos T, Mendoza-Martín JL, Fernández FGA, Molina E, Vieira-Costa JA, Heaven S (2016) Optimization of carbon dioxide supply in raceway reactors?: Influence of carbon dioxide molar fraction and gas flow rate. Bioresour Technol 212: 72–81. doi: 10.1016/j.biortech.2016.04.023
Fekrat F, Nami B, Ghanavati H, Ghaffari A, Shahbazi M (2019) Optimization of chitosan/activated charcoal-based purification of Arthrospira platensis phycocyanin using response surface methodology. J Appl Phycol 31: 1095–1105. doi: 10.1007/s10811-018-1626-8
Gallardo-Rodríguez J, Sanchez-Miron A, García-Camacho F, Lopez-Rosales L, Chisti Y, Molina-Grima E (2012) Bioactives from microalgal dinoflagellates. Biotechnol. Adv 30: 1673–1684. doi: 10.1016/j. biotechadv.2012.07.005
García-Camacho F, Gallardo-Rodríguez J, Sanchez-Miron A, García MCC, Belarbi EH, Chisti Y, Molina EM (2007) Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 25: 176–194. doi: 10.1016/j.biotechadv.2006.11.008
García-Cubero R, Moreno-Fernández J, García-González M (2017) Modelling growth and CO2 fixation by Scenedesmus vacuolatus in continuous culture. Algal Res 24: 333–339. doi: 10.1016/j.algal.2017.04.018
Gauthier DA, Turpin DH (1997) Interactions between inorganic phosphate (Pi) assimilation, photosynthesis and respiration in the Pi-limited green alga Selenastrum minutum. Plant Cell Environ 20: 12–24. doi: 10.1046/j.1365-3040.1997.d01-6.x
Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21: 493–507. doi: 10.1007/s10811-008-9392-7
Grobbelaar JU (2013) Inorganic algal nutrition. Pp 123–133. In: Richmond A, Hu Q (Eds). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Second Edition. Wiley-Blackwell Pub Ltd, New York. doi: 10.1002/9781118567166.ch8
Guldhe A, Bhola V, Rawat I, Bux F (2015) Carbon dioxide sequestration by microalgae: Biorefinery approach for clean energy and environment. pp 147–154. In: Singh B, Bauddh K, Bux F (Eds). Algae and Environmental Sustainability. Springer, New Delhi, doi: 10.1007/978-81-322-2641-3_12
Gupta PL, Lee SM, Choi HJ (2015) A mini review: Photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31: 1409–1417. doi: 10.1007/s11274-015-1892-4
Harahap F, Silveira S, Khatiwada D (2019) Cost competitiveness of palm oil biodiesel production in Indonesia. Energy J 170: 62–72. doi: 10.1016/j.energy.2018.12.115
Huesemann M, Crowe B, Waller P, Chavis A, Hobbs S, Edmundson S, Wigmosta M (2016) A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Res 13: 195–206. doi: 10.1016/j.algal.2015.11.008
Hunt RW, Chinnasamy S, Das KC (2011) The Effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures. Appl Biochem Biotechnol 164: 1350–1365. doi: 10.1007/s12010-011-9217-z
Iasimone F, Panico A, de Felice V, Fantasma F, Iorizzi M, Pirozzi F (2018) Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. J Environ Manage 223: 1078–1085. doi: 10.1016/j.jenvman.2018.07.024
Irfan MF, Hossain SMZ, Khalid H, Sadaf F, Al-Thawadi S, Alshater A, Hossain MM, Razzak SA (2019) Optimization of bio-cement production from cement kiln dust using microalgae. Biotechnol Rep 23: e00356. doi: 10.1016/j.btre.2019.e00356
Islam MA, Heimann K, Brown RJ (2017) Microalgae biodiesel?: Current status and future needs for engine performance and emissions. Renew Sustain Energy Rev 79: 1160–1170. doi: 10.1016/j.rser.2017.05.041
Jafari A, Esmailzadeh F, Mowla D, Sadatshojaei E, Heidari S, Wood DA (2021) New insights to direct conversion of wet microalgae impregnated with ethanol to biodiesel exploiting extraction with supercritical carbon dioxide. Fuel 285: 119199. doi: 10.1016/j.fuel.2020.119199
Jeon H, Lee Y, Chang KS, Lee CG, Jin E (2013) Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp. J Microbiol 51: 773–776. doi: 10.1007/s12275-013-3256-9
Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128: 359–364. doi :10.1016/j.biortech.2012.10.119
Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies 6: 4607–4638. doi:10.3390/en6094607
Kim DG, Oh HM, Park YH, Kim HS, Lee HG, Ahn CY (2013) Optimization of flocculation conditions for Botryococcus braunii using response surface methodology. J Appl Phycol 25: 875–882. doi: 10.1007/s10811-012-9948-4
Kim JK, Kottuparambil S, Moh SH, Lee TK, Kim YJ, Rhee JS, Choi EM, Kim BH, Yu YJ, Yarish C, Han T (2015) Potential applications of nuisance microalgae blooms. J Appl Phycol 27: 1223–1234. doi: 10.1007/s10811-014-0410-7
Kim W, Park JM, Gim GH, Jeong SH, Kang CM, Kim DJ, Kim SW (2012) Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess Biosyst Eng 35: 19–27. doi: 10.1007/s00449-011-0612-1
Kirrolia A, Bishnoi NR, Singh R (2014) Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp. for biodiesel production. Ann Microbiol 64: 1133–1147. doi: 10.1007/s13213-013-0752-4
Kobayashi N, Barnes A, Jensen T, Noel E, Andlay G, Rosenberg JN, Betenbaugh MJ, Guarnieri MT, Oyler GA (2015) Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales. Bioresour Technol 198: 246–255. doi: 10.1016/j.biortech.2015.08.124
Kozlova TA, Hardy BP, Krishna P, Levin DB (2017) Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Res 27: 325–334. doi: 10.1016/j.algal.2017.09.020
Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO(2) fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol 28: 371–380. doi: 10.1016/j.tibtech.2010.04.004
Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152: 225–233. doi: 10.1016/j.biortech.2013.10.098
Lababpour A (2018) A dynamic model for the prediction of flue gas carbon dioxide removal by the microalga Chlorella vulgaris in column photobioreactor. Alexandria Eng J 57: 3311–3320. doi: 10.1016/j.aej.2018.01.013
Lam MK, Tan KT, Lee KT, Mohamed AR (2009) Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renew Sustain Energy Rev 13: 1456–1464. doi: 10.1016/j.rser.2008.09.009
Lee WH, Liao CH, Tsai MF, Huang CW, Wu JCS (2013) A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Appl Catal B Environ 132–133: 445–451. doi: 10.1016/j.apcatb.2012.12.024
Lehmuskero A, Chauton MS, Boström T (2018) Light and photosynthetic microalgae: A review of cellular- and molecular-scale optical processes. Prog Oceanogr 168: 43–56. doi: 10.1016/j.pocean.2018.09.002
Li D, Wang L, Zhao Q, Wei W, Sun Y (2015) Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour Technol 185: 269–275. doi: 10.1016/j.biortech.2015.03.011
Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia?: An overview. Renew Sustain Energy Rev 14: 938–954. doi: 10.1016/j.rser.2009.10.027
Mandalam RK, Palsson BO (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol Bioeng 59: 605-611. doi: 10.1002/(sici)1097-0290(19980905)59:5<605::aid-bit11>3.0.co;2-8
Mao R, Guo S (2018) Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis. Appl Microbiol Biotechnol 102: 5245–5254. doi: 10.1007/s00253-018-8923-7
Maryshamya A, Rajasekar T, Rengasamy R (2019) Carbon sequestration potential of Scenedesmus quadricauda (Turpin) and evaluation on zebra fish (Danio rerio). Aquac Rep 13: 100178. doi: 10.1016/j.aqrep.2018.100178
Masojidek J, Torzillo G, Koblyzek M (2013) Photosynthesis in microalgae. pp 21–36. In: Richmond A, Hu Q (Eds). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Second Edition. Wiley-Blackwell Pub Ltd, New York. doi: 10.1002/9781118567166.ch8
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 14: 217–232. doi: 10.1016/j.rser.2009.07.020
Michael C, del Ninno M, Gross M, Wen Z (2015) Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems. Bioresour Technol 179: 473–482. doi: 10.1016/j.biortech.2014.12.075
Morales M, Sanchez L, Revah S (2018) The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiol Lett 365: fnx262. doi: 10.1093/femsle/fnx262
Moser BR (2009) Biodiesel production, properties, and feedstocks. In Vitro Cell Dev Biol Plant 45: 229–266. doi: 10.1007/s11627-009-9204-z
Mousavi P, Morowvat MH, Montazeri-Najafabady N, Abolhassanzadeh Z, Mohagheghzadeh A, Hamidi M, Niazi A, Ghasemi Y (2016) Investigating the effects of phytohormones on growth and ?-carotene production in a naturally isolates stain of Dunaliella salina. J Appl Pharm Sci 6: 164–171. doi: 10.7324/JAPS.2016.60826
Mousavi S, Najafpour GD, Mohammadi M (2018) CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environ Sci Pollut Res Int 25: 30139–30150. doi: 10.1007/s11356-018-3037-4
Mujiyanto S, Tiess G (2013) Secure energy supply in 2025: Indonesia’s need for an energy policy strategy. Energy Policy 61: 31–41. doi: 10.1016/j.enpol.2013.05.119
Nagarajan S, Chou SK, Cao S, Wu C, Zhou Z (2013) An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour Technol 145: 150–156. doi: 10.1016/j.biortech.2012.11.108
Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosyst Eng 96: 129–134. doi: 10.1016/j.biosystemseng.2006.09.010
Ou L, Banerjee S, Xu H, Coleman AM, Cai H, Lee U, Wigmosta MS, Hawkins TR (2021) Utilizing high-purity carbon dioxide sources for algae cultivation and biofuel production in the United States: Opportunities and challenges. J Clean Prod 321: 128779. doi: 10.1016/j.jclepro.2021.128779
Pagels F, Amaro HM, Tavares TG, Casal S, Malcata FX, Sousa-Pinto I, Guedes AC (2021) Effects of irradiance of red and blue:red LEDs on Scenedesmus obliquus M2-1 optimization of biomass and high added-value compounds. J Appl Phycol 33: 1379–1388. doi: 10.1007/s10811-021-02412-4
Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90: 1429–1441. doi: 10.1007/s00253-011-3170-1
Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171: 1128–1142. doi: 10.1007/s12010-013-0386-9
Peraturan Presiden Republik Indonesia No. 5/2006 tentang Kebijakan Energi Nasional
Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73: 57–66. doi: 10.1007/s10725-013-9867-7
Piotrowska A, Czerpak R (2009) Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. Acta Physiol Plant 31: 573–585. doi: 10.1007/s11738-008-0267-y
Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16: 3043–3053. doi: 10.1016/j.rser.2012.02.055
P?aczek M, Patyna A, Witczak S (2017) Technical evaluation of photobioreactors for microalgae cultivation. E3S Web Conf. 19: 02032. doi: 10.1051/e3sconf/20171902032
Portnoy VA, Bezdan D, Zengler K, (2011) Adaptive laboratory evolution – harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22: 590–594. doi: 10.1016/j.copbio.2011.03.007
Praharyawan S, Rahman DY, Susilaningsih D (2018) Influence of light intensity on lipid productivity and fatty acids profile of Choricystis sp. LBB13-AL045 for biodiesel production. Res J Life Sci 5: 128–139. doi: 10.21776/ub.rjls.2018.005.02.7
Praharyawan S, Rahman DY, Susilaningsih D (2020) The enhancement of growth, biomass production and lipid productivity of microalgae Choricystis sp. LBB13-AL045 by the addition of hot water extract of its dried biomass. IOP Conf Ser: Earth Environ Sci 457: 012071. doi: 10.1088/1755-1315/457/1/012071
Pratt R (1938) Influence of auxins on the growth of Chlorella vulgaris. Am J Bot 25: 498–501. doi: 10.2307/2436677
Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109: 47–57. doi: 10.1007/s11120-010-9608-y
Pulz O (2001) Photobioreactors: Production systems for phototrophic microorganisms. App Microbiol Biotechnol 57: 287–293. doi: 10.1007/s002530100702
Qu F, Jin W, Zhou X, Wang M, Chen C, Tu R, Han S, He Z, Li S (2020) Nitrogen ion beam implantation for enhanced lipid accumulation of Scenedesmus obliquus in municipal wastewater. Biomass and Bioenergy 134: 105483. doi: 10.1016/j.biombioe.2020.105483
Ra CH, Sirisuk P, Jung JH, Jeong GT, Kim SK (2018) Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess Biosyst Eng 41: 457–465. doi: 10.1007/s00449-017-1880-1
Rai SV, Rajashekhar M (2014) Effect of pH, salinity and temperature on the growth of six species of marine phytoplankton. J Algal Biomass Util 5: 55–59. Corpus ID: 86060506
Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sustain Energy Rev 80: 765–773. doi: 10.1016/j.rser.2017.05.202
Raposo MF de J, de Morais RMSC (2013) Influence of the growth regulators kinetin and 2,4-D on the growth of two chlorophyte microalgae, Haematococcus pluvialis and Dunaliella salina. J Basic Appl Sci 9: 302–308. doi: 10.6000/1927-5129.2013.09.40
Ravikumar R (2014) Micro algae in open raceways. pp 127–146. In: Bajpai R, Prokop A, Zappi M (Eds). Algal Biorefineries. Springer, Dordrecht. doi: 10.1007/978-94-007-7494-0_5
Razzak SA (2019) In situ biological CO2 fixation and wastewater nutrient removal with Neochloris oleoabundans in batch photobioreactor. Bioprocess Biosyst Eng 42: 93–105. doi: 10.1007/s00449-018-2017-x
Richmond A (2013) Biological principles of mass cultivation of photoautotrophic microalgae. Pp 171–204. In: Richmond A, Hu Q (Eds). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Second Edition. Wiley-Blackwell Pub Ltd, New York. doi: 10.1002/9781118567166.ch11
Rodas-Zuluaga LI, Castaneda-Hernandez L, Castillo-Vacas EI, Gradiz-Menjivar A, López-Pacheco IY, Castillo-Zacarías C, Boully L, Iqbal HMN, Parra-Saldívar R (2021) Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. J CO2 Util 43: 101371. doi: 10.1016/j.jcou.2020.101371
Romanenko KO, Kosakovskaya IV, Romanenko PO (2016) Phytohormones of microalgae: Biological role and involvement in the regulation of physiological processes. Int J Algae 18: 179–201. doi: 10.1615/InterJAlgae.v18.i2.70
Ruiz-Ruiz P, Estrada A, Morales M (2020) Carbon dioxide capture and utilization using microalgae. Pp 185–206. In: Jacob-Lopes E, Maroneze MM, Queiroz MI, Zepka LQ (Eds). Handbook of Microalgae-Based Processes and Products. 1st Edition. Elsevier, Amsterdam. doi:10.1016/B978-0-12-818536-0.00008-7
Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9: 3036–3043. doi:10.1039/c6ee01493c
Salama E, Kabra AN, Ji M, Rae J, Min B, Jeon B (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172: 97–103. doi: 10.1016/j.biortech.2014.09.002
San Pedro A, Gonzalez-Lopez CV, Acien FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169: 667–676. doi: 10.1016/j.biortech.2014.07.052
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnerg Res 1: 20–43. doi: 10.1007/s12155-008-9008-8
Seo SH, Ha JS, Yoo C, Srivastava A, Ahn CY, Cho DH, La HJ, Han MS, Oh HM (2017) Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresour Technol 244: 621–628. doi: 10.1016/j.biortech.2017.08.020
Seo YH, Lee Y, Jeon DY, Han JI (2015) Enhancing the light utilization efficiency of microalgae using organic dyes. Bioresour Technol 181: 355–359. doi: 10.1016/j.biortech.2015.01.031
Sharmila D, Suresh A, Indhumathi J, Gowtham K, Velmurugan N (2018) Impact of various color filtered LED lights on microalgae growth, pigments and lipid production. Eur J Biotechnol Biosci 6: 1–7
Shin DY, Cho HU, Utomo JC, Choi YN, Xu X, Park JM (2015) Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour Technol 184: 215–221. doi: 10.1016/j.biortech.2014.10.090
Singh J, Jain D, Agarwal P, Singh RP (2020) Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem 95: 223–234. doi: 10.1016/j.procbio.2020.02.012
Skorupskaite V, Makareviciene V, Levisauskas D (2015) Optimization of mixotrophic cultivation of microalgae Chlorella sp. for biofuel production using response surface methodology. Algal Res 7: 45–50. doi: 10.1016/j.algal.2014.12.001
Stirk WA, van Staden J (2020) Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol Adv 44: 107612. doi: 10.1016/j.biotechadv.2020.107612
Stirk WA, Balint P, Tarkowska D, Novak O, Strnad M, van Staden J (2013) Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiol Biochem 70: 348–353. doi: 10.1016/j.plaphy.2013.05.037
Stirk WA, Tarkowská D, Gruz J, Strnad M, Ördög V, van Staden J (2019) Effect of gibberellins on growth and biochemical constituents in Chlorella minutissima (Trebouxiophyceae). S Afr J Bot 126: 92–98. doi: 10.1016/j.sajb.2019.05.001
Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54: 163–170. doi: 10.1134/S1021443707020021
Thawechai T, Cheirsilp B, Louhasakul Y, Boonsawang P, Prasertsan P (2016) Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies. Bioresour Technol 219: 139–149. doi: 10.1016/j.biortech.2016.07.109
Thomas DM, Mechery J, Paulose SV (2016) Carbon dioxide capture strategies from flue gas using microalgae: A review. Environ Sci Pollut Res Int 23: 16926–16940. doi: 10.1007/s11356-016-7158-3
Tian B, Wang Y, Zhu Y, Lu X, Huang K, Shao N, Beck CF (2006) Synthesis of the photorespiratory key enzyme serine?: Glyoxylate aminotransferase in C. reinhardtii is modulated by the light regime and cytokinin. Physiol Plant 127: 571–582. doi: 10.1111/j.1399-3054.2006.00691.x
Toledo-Cervantes A, Morales M, Novelo E, Revah S (2013) Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour Technol 130: 652–658. doi: 10.1016/j.biortech.2012.12.081
Varshney P, Beardall J, Bhattacharya S, Wangikar PP (2018) Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res 30: 28–37. doi: 10.1016/j.algal.2017.12.006
Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. pp 117–145. In: Richmond A (Ed). Handbook of Microalgal Mass Culture. 1st Edition. CRC Press, Boca Raton
Wang B, Li Y, Wu N, Lan CQ (2008) CO(2) bio-mitigation using microalgae. Appl Microbiol Biotechnol 79: 707–718. doi: 10.1007/s00253-008-1518-y
Wu Q, Guo L, Wang Y, Zhao Y, Jin C, Gao M, She Z (2021) Phosphorus uptake, distribution and transformation with Chlorella vulgaris under different trophic modes. Chemosphere 285: 131366. doi: 10.1016/j.chemosphere.2021.131366
Yaakob MA, Mohamed RMSR, Al-gheethi A, Tiey A, Kassim AHM (2019) Optimising of Scenedesmus sp. biomass production in chicken slaughterhouse wastewater using response surface methodology and potential utilisation as fish feeds. Environ Sci Pollut Res Int 26: 12089–12108. doi: 10.1007/s11356-019-04633-0
Yang Y, Weathers P (2015) Red light and carbon dioxide differentially affect growth, lipid production, and quality in the microalga, Ettlia oleoabundans. Appl Microbiol Biotechnol 99: 489–499. doi: 10.1007/s00253-014-6137-1
Ying K, Gilmour DJ, Zimmerman WB (2014) Effects of CO2 and pH on growth of the microalga Dunaliella salina. J Microb Biochem Technol 6: 167–173. doi: 10.4172/1948-5948.1000138
Yoo C, Choi G, Kim S, Oh H (2013) Ettlia sp. YC001 showing high growth rate and lipid content under high CO2. Bioresour Technol 127: 482–488. doi: 10.1016/j.biortech.2012.09.046
Yu Z, Pei H, Jiang L, Hou Q, Nie C, Zhang L (2018) Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae. Bioresour Technol 247: 904–914. doi: 10.1016/j.biortech.2017.09.192
Yuan H, Zhang X, Jiang Z, Wang X, Chen X, Cao L, Zhang X (2019) Analyzing the effect of pH on microalgae adhesion by identifying the dominant interaction between cell and surface. Colloids Surf B Biointerfaces 177: 479–486. doi: 10.1016/j.colsurfb.2019.02.023
Zhang H, Yin W, Ma D, Liu X, Xu K, Liu J (2021) Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. J Appl Phycol 33: 13–23. doi: 10.1007/s10811-020-02074-8
Zhang H, Zeng R, Chen D, Liu J (2016) A pivotal role of vacuolar H+ - ATPase in regulation of lipid production in Phaeodactylum tricornutum. Sci Rep 6: 31319. doi: 10.1038/srep31319
Zhang L, Wang YZ, Wang S, Ding K (2018) Effect of carbon dioxide on biomass and lipid production of Chlorella pyrenoidosa in a membrane bioreactor with gas-liquid separation. Algal Res 31: 70–76. doi: 10.1016/j.algal.2018.01.014
Zhang S, Kim TH, Han TH, Hwang SJ (2015) Influence of light conditions of a mixture of red and blue light sources on nitrogen and phosphorus removal in advanced wastewater treatment using Scenedesmus dimorphus. Biotechnol Bioprocess Eng 20: 760–765. doi: 10.1007/s12257-015-0066-4
Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide ?xation and biomass production: A review. Renew Sustain Energ Rev 31: 121–132. doi: 10.1016/j.rser.2013.11.054
Zheng M, Ji X, He Y, Li Z, Wang M, Chen B, Huang J (2020) Simultaneous fixation of carbon dioxide and purification of undiluted swine slurry by culturing Chlorella vulgaris MBFJNU-1. Algal Res 47: 101866. doi: 10.1016/j.algal.2020.101866