REVIEW: PERAN NANOPARTIKEL DALAM MENGHAMBAT PERTUMBUHAN PARASIT Plasmodium PENYEBAB MALARIA

Main Article Content

Diah Anggraini Wulandari

Abstract

Malaria merupakan masalah kesehatan yang dihadapi Indonesia khususnya di beberapa wilayah timur Indonesia. Kajian ini memberikan gambaran potensi nanopartikel dalam menghambat vektor malaria maupun pertumbuhan parasit Plasmodium penyebab malaria berdasarkan literatur terbaru sebagai bahan acuan maupun ide-ide penelitian di masa mendatang. Nanopartikel dapat disintesis menggunakan tiga metode yaitu fisika, kimia dan biologi. Penggunaan nanopartikel dengan metode biologi sangat direkomendasikan karena lebih mudah diterapkan, ramah lingkungan, bersifat non-toksik, dan mudah diperbanyak dibandingkan dengan nanopartikel yang disintensis dari fisiko-kimia. Nanopartikel yang disintesis dari beberapa tanaman dapat menghambat pertumbuhan parasit Plasmodium dengan IC50 3–78 g mL–1. Aktivitas ini tergolong tinggi hingga sedang dalam menghambat pertumbuhan parasit Plasmodium penyebab malaria. Mekanisme penghambatan pertumbuhan Plasmodium dengan cara meningkatkan pH vakuola makanan akibat reaksi nanopartikel dengan feriprotoporpirin IX. Tingginya pH pada vakuola makanan akan mengganggu aktivitas metabolisme dengan cara menghambat aktivitas enzim aspartat dan sistein protease sehingga parasit akan mati.

Article Details

How to Cite
Wulandari, D. A. (2023). REVIEW: PERAN NANOPARTIKEL DALAM MENGHAMBAT PERTUMBUHAN PARASIT Plasmodium PENYEBAB MALARIA. Jurnal Bioteknologi Dan Biosains Indonesia, 8(1), 124–136. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1847
Section
Articles

References

Abdelghany AM, Oraby AH, Asnag GM (2019) Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J Mol Struct 1180: 15–25. doi: 10.1016/j.molstruc.2018.11.095

Abdullah M, Virgus Y, Nirmin, Khairurrijal (2008) Review: Sintesis nanopartikel. J Nano Saintek 1: 33–57

Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng 1: 591–602. doi: 10.1021/sc300118u

Bahadar MH, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20: 1–11. doi: 10.7508/ibj.2016.01.001

Balaraman P, Balasubramanian B, Kaliannan D, Durai M, Kamyab H, Park S, Chelliapan S, Lee CT, Maluventhen V, Maruthupandian A (2020) Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste Biomass Valor 11: 5255–5271. doi: 10.1007/s12649-020-01083-5

Banala RR, Nagati VB, Karnati PR (2015) Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci 22: 637–644. doi: 10.1016/j.sjbs.2015.01.007

Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health - A review. Biol Trace Elem Res 193: 118–129. doi: 10.1007/s12011-019-01706-6

Boldeiu A, Simion M, Mihalache I, Radoi A, Banu M, Varasteanu P, Nadejde P, Vasile E, Acasandrei A, Popescu RC, Savu D, Kusko M (2019) Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies. J Photochem Photobiol B: Biol 197: 111519. doi: 10.1016/j.jphotobiol.2019.111519

Caroli A, Simeoni S, Lepore R, Tramontano A, Via A (2012) Investigation of a potential mechanism for the inhibition of SmTGR by auranofin and its implication for Plasmodium falciparum inhibition. Biochem Biophys Res Commun 417: 576–581. doi: 10.1016/j.bbrc.2011.12.009

Chaves-Sandoval BE, Ibnez-Hernandez MAA, Gracia-Franco F, Galindo-Perez EJ, Abrica-González P, Martínez-Jiménez A, Balderas López JA (2016) Biological synthesis and characterization of gold nanoparticles (AuNPs) using plant extracts. J Nanomater Mol Nanotechnol 5: 4. doi: 10.4172/2324-8777.1000192

Chen X, Zhao X, Gao Y, Yin J, Bai M, Wang F (2018) Green synthesis of gold nanoparticles using carrageenan oligosaccharide and their in vitro antitumor activity. Mar Drugs 16: 277. doi: 10.3390/md16080277

Demir E, Turna F, Vales G, Kaya B, Creus A, Marcos R (2013) In vivo genotoxicity assessment of titanium, zirconium and alumunium nanoparticles, and their microparticulated forms, in Drosophila. Chemosphere 93: 2304–2310. doi: 10.1016/j.chemosphere.2013.08.022

Devatha CP, Thalla AK (2018) Chapter 7 - Green synthesis of nanomaterials. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (Eds). Synthesis of Inorganic Nanomaterials: Advances and Key Technologies. Pp 169–184. Woodhead Publishing, Duxford UK. doi: 10.1016/B978-0-08-101975-7.00007-5

Dewi AKT, Kartini, Sukweenadhi J, Avanti C (2019) Karakter fisik dan aktivitas antibakteri nanopartikel perak hasil green synthesis menggunakan ekstrak air daun sendok (Plantago major L.). Pharm Sci Res 6: 69–81. doi: 10.7454/psr.v6i2.4220

Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R (2019) Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett 236: 498–502. doi: 10.1016/j.matlet.2018.10.156

Dubey SP, Lahtinen M, Sillanpaa M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 264: 34–41. doi: 10.1016/j.colsurfa.2010.04.023

Dutta PP, Bordoloi M, Gogoi K, Roy S, Narzary B, Bhattacharryya DR, Mohapatra PK, Mazumder B (2017) Antimalarial silver and gold nanoparticles: Green synthesis, characterization and in vitro study. Biomed Pharmacother 91: 567–580. doi: 10.1016/j.biopha.2017.04.032

Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85: 743–750. doi: 10.1007/s00204-010-0545-5

Gadhi TA, Hernandez S, Castellino M, Chiodoni A, Husak T, Barrera G, Allia P, Russo N, Tagliaferro A (2018) Single BiFeO3 and mixed BiFeO3/Fe2O3/Bi2Fe4O9 ferromagnetic photocatalysts for solar light driven water oxidation and dye pollutants degradation. J Ind Eng Chem 63: 437–448. doi:10.1016/j.jiec.2018.03.004

Gangapuram BR, Bandi R, Alle M, Dadigala R, Kotu GM, Guttena V (2018) Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J Mol Struct 1167: 305–315. doi: 10.1016/j.molstruc.2018.05.004

Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemichal, physical and green synthesis, classification, characterization and application of nanoparticles. Green Chem Lett Rev 13: 223–245. doi: 10.1080/17518253.2020.1802517

Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasite and malarial mosquitoes. Parasitol Int 65: 276–284. doi: 10.1016/j.parint.2016.02.003

Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, Tamilselvan S, Bennelli G, Parumal P (2017) Ag nanoparticles synthesized using B-caryophyllene isolated from Marruya koenigii: Antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). J Clust Sci 28: 1667–1684. doi: 10.1007/s10876-017-1180-6

Kazimirova A, Baranokova M, Staruchova M, Drlickova M, Volkovova K, Dusinska M (2019) Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo, and in vivo. Mutat Res 843: 57–65. doi: 10.1016/j.mrgentox.2019.05.001

Kemenkes (2019) Buku Saku Tatalaksana Kasus Malaria. Dirjen Pencegahan dan Pengendalian Penyakit, Kementerian Kesehatan Republik Indonesia, Jakarta

Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17: 4019–4024. doi: 10.1088/0957-4484/17/16/004

Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69-70: 329–334. doi: 10.1016/S0921-5107(99)00298-6

Latifah N, Subarnas A, Chaerunisaa (2020) Antimalaria medicine and its mechanism: A review. Majalah Farmasutika 5: 39–48. doi: 10.24198/mfarmasetika.v5i1.25927

Lee JH, Ju JE, Kim BI, Pak PJ, Coi EK, Lee HS, Chung N (2014) Rod?shaped iron oxide nanoparticles are more toxic than sphere?shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33: 2759–2766. doi: 10.1002/etc.2735

Lourenço IM, Pieretti JC, Nascimento MHM, Lombello CB, Seabra AB (2019) Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energ Ecol Environ 4: 261–270. doi: 10.1007/s40974-019-00134-5

Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L (1999) Gold nanoparticles: Production, reshaping, and thermal charging. J Nanoparticle Res 1: 243–251. doi: 10.1023/A:1010012802415

Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe?O?) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18: 5954–5964. doi: 10.3390/molecules18055954

Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108: 1541–1549. doi: 10.1007/s00436-010-2212-4

Martien R, Adhyatmika, Irianto IDK, Farida V, Sari DP (2012) Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat. Majalah Farmaseutik 8: 133–144. doi: 10.22146/farmaseutik.v8i1.24067

Mishra A, Kaushik NK, Sardar M, Sahal D (2013) Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B Biointerfaces 111: 713–718. doi: 10.1016/j.colsurfb.2013.06.036

Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153: 129–138. doi: 10.1016/j.exppara.2015.03.017

Mythili R, Selvankumar T, Srinivasan P, Sengottaiyan A, Sabastinraj J, Ameen F, Al-Sabri A, Kamala-Kannan S, Govarthanan M, Kim H (2018) Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste. J Mol Liq 262: 318–321. doi: 10.1016/j.molliq.2018.04.087

Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41: 5723–5730. doi: 10.1007/s11164-014-1696-4

Ouano JJS, Que MCO, Basilia BA, Alguno AC (2018) Controlling the absorption spectra of gold nanoparticles synthesized via green synthesis using brown seaweed (Sargassum crassifolium) extract. In: Amemiya T, Lei X, Peng XQ (Eds). Key Engineering Materials, pp. 78–82. Trans Tech Publications, Switzerland. doi: 10.4028/www.scientific.net/KEM.772.78

Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3: 208–217

Paolo M, Paolo A, Alessandro C (2012) Nanoparticles. In: Bhushan B (Ed). Encyclopedia of Nanotechnology. Springer, Dordrecht. doi: 10.1007/978-90-481-9751-4_236

Patra JK, Baek KH (2014) Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J Nanomater 2014: 417305. doi: 10.1155/2014/417305

Prasetia E, Firdaus ML, Elvianawati (2019) Upaya peningkatan sensitivitas nanopartikel perak untuk analisis ion merkuri (II) secara citra digital dengan penambahan NaCl. J Alotrop 3: 139–147

Rahman K, Khan SU, Fahad S, Chang MX, Abbas A, Khan WU, Rahman L, Ul Haq Z, Nabi G, Khan D (2019) Nano-biotechnology: A new approach to treat and prevent malaria. Int J Nanomedicine 14: 1401–1410. doi: 10.2147/IJN.S190692

Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118: 196 203. doi: 10.1016/j.actatropica.2011.03.003

Rotimi L, Ojemaye MO, Okoh OO, Sadimenko A, Okoh AI (2019) Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem Lett Rev 12: 61–68. doi: 10.1080/17518253.2019.1569730

Saber H, Alwaleed EA, Ebnalwaled KA, Sayed A, Salem W (2017) Efficacy of silver nanoparticles mediated by Jania rubens and Sargassum dentifolium macroalgae; caharacterization and biomedical aplplication. Egypt J Basic Appl Sci 4: 249–255. doi: 10.1016/j.ejbas.2017.10.006

Saha SJ, Siddiqui AA, Pramanik S, Saha D, De R, Mazumder S, Debsharma S, Nag S, Banerjee C, Bandyopadhyay U (2019) Hydrazonophenol, a food vacuole-targetes and ferriprotoporphyrin IX-interacting chemotype prevents drug-resistant malaria. ACS Infect Dis 5: 63–73. doi: 10.1021/acsinfecdis.8b00178

Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. e-J Chem 6: 61–70. doi: 10.1155/2009/734264

Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73: 332–338. doi: 10.1016/j.colsurfb.2009.06.005

Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8: 7278–7308. doi: 10.3390/ma8115377

Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core – Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275: 496–502. doi: 10.1016/j.jcis.2004.03.003

Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res 745: 84–91. doi: 10.1016/j.mrgentox.2011.12.009

Sherman IW (1998) Malaria: Parasite Biology, Pathogenesis, and Protection. American Society for Microbiology Press, Washington DC

Sigh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34: 588–599. doi: 10.1016/j.tibtech.2016.02.006

Singh AK, Tiwari R, Singh VK, Singh P, Khadim SR, Singh U, Laxmi, Srivastava V, Hasan SH, Asthana RK (2019) Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J Drug Deliv Sci Technol 51: 164–176. doi: 10.1016/j.jddst.2019.02.023

Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC (2015) Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 44: 811–816. doi: 10.3109/21691401.2015.1008514

Sun L, Li Y, Liu X, Jin M, Zhang L, Du Z, Guo C, Huang P, Sun Z (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 25: 1619–1629. doi: 10.1016/j.tiv.2011.06.012

Tian J, Wong KKY, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2: 129–136. doi: 10.1002/cmdc.200600171

Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size. Appl Surf Sci 202: 80–85. doi: 10.1016/S0169-4332(02)00936-4

Umamaheswari C, Lakshmanan A, Nagarajan NS (2018) Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J Photochem Photobiol B, Biol 178: 33–39. doi: 10.1016/j.jphotobiol.2017.10.017

Wac?awek S, Gon?uková Z, Adach K, Fija?kowski M, ?erník M (2018) Green synthesis of gold nanoparticles using Artemisia dracunculus extract: Control of the shape and size by varying synthesis conditions. Environ Sci Pollut Res int 25: 24210–24219. doi: 10.1007/s11356-018-2510-4

Wang L, Wu Y, Xie J, Wu S, Wu Z (2018) Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extract. Mater Sci Eng C Mater Biol Appl 86: 1–8. doi: 10.1016/j.msec.2018.01.003

WHO (2019) Global Malaria Programme. World Health Organization https://www.who.int/malaria/about_us/en/. Accessed 4 Oct 2020

WHO (2021) World Malaria Report 2020: 20 Years of Global Progress and Challenges. World Health Organization. https://www.who.int/publications/i/item/9789240015791. Accessed 19 April 2021

Wu H, Zhang J (2018) Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective. Saudi Pharm J 26: 205–210. doi: 10.1016/j.jsps.2017.12.010

Yulizar Y, Kadja GTM, Safaat M (2016) Well-exposed gold nanoclusters on Indonesia natural zeolite: A highly active and reusable catalyst for the reduction of p-nitrophenol. Reac Kinet Mech Cat 117: 353–363. doi: 10.1007/s11144-015-0916-2

Zayadi RA, Abu Bakar F, Ahmad MK (2019) Elucidation of synergistic effect of eucalyptus globulus honey and Zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties. Sustain Chem Pharm 13: 100156. doi: 10.1016/j.scp.2019.10015