REVIEW: PERAN NANOPARTIKEL DALAM MENGHAMBAT PERTUMBUHAN PARASIT Plasmodium PENYEBAB MALARIA
Main Article Content
Abstract
Malaria merupakan masalah kesehatan yang dihadapi Indonesia khususnya di beberapa wilayah timur Indonesia. Kajian ini memberikan gambaran potensi nanopartikel dalam menghambat vektor malaria maupun pertumbuhan parasit Plasmodium penyebab malaria berdasarkan literatur terbaru sebagai bahan acuan maupun ide-ide penelitian di masa mendatang. Nanopartikel dapat disintesis menggunakan tiga metode yaitu fisika, kimia dan biologi. Penggunaan nanopartikel dengan metode biologi sangat direkomendasikan karena lebih mudah diterapkan, ramah lingkungan, bersifat non-toksik, dan mudah diperbanyak dibandingkan dengan nanopartikel yang disintensis dari fisiko-kimia. Nanopartikel yang disintesis dari beberapa tanaman dapat menghambat pertumbuhan parasit Plasmodium dengan IC50 3–78 g mL–1. Aktivitas ini tergolong tinggi hingga sedang dalam menghambat pertumbuhan parasit Plasmodium penyebab malaria. Mekanisme penghambatan pertumbuhan Plasmodium dengan cara meningkatkan pH vakuola makanan akibat reaksi nanopartikel dengan feriprotoporpirin IX. Tingginya pH pada vakuola makanan akan mengganggu aktivitas metabolisme dengan cara menghambat aktivitas enzim aspartat dan sistein protease sehingga parasit akan mati.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abdelghany AM, Oraby AH, Asnag GM (2019) Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J Mol Struct 1180: 15–25. doi: 10.1016/j.molstruc.2018.11.095
Abdullah M, Virgus Y, Nirmin, Khairurrijal (2008) Review: Sintesis nanopartikel. J Nano Saintek 1: 33–57
Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng 1: 591–602. doi: 10.1021/sc300118u
Bahadar MH, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20: 1–11. doi: 10.7508/ibj.2016.01.001
Balaraman P, Balasubramanian B, Kaliannan D, Durai M, Kamyab H, Park S, Chelliapan S, Lee CT, Maluventhen V, Maruthupandian A (2020) Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste Biomass Valor 11: 5255–5271. doi: 10.1007/s12649-020-01083-5
Banala RR, Nagati VB, Karnati PR (2015) Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci 22: 637–644. doi: 10.1016/j.sjbs.2015.01.007
Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health - A review. Biol Trace Elem Res 193: 118–129. doi: 10.1007/s12011-019-01706-6
Boldeiu A, Simion M, Mihalache I, Radoi A, Banu M, Varasteanu P, Nadejde P, Vasile E, Acasandrei A, Popescu RC, Savu D, Kusko M (2019) Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies. J Photochem Photobiol B: Biol 197: 111519. doi: 10.1016/j.jphotobiol.2019.111519
Caroli A, Simeoni S, Lepore R, Tramontano A, Via A (2012) Investigation of a potential mechanism for the inhibition of SmTGR by auranofin and its implication for Plasmodium falciparum inhibition. Biochem Biophys Res Commun 417: 576–581. doi: 10.1016/j.bbrc.2011.12.009
Chaves-Sandoval BE, Ibnez-Hernandez MAA, Gracia-Franco F, Galindo-Perez EJ, Abrica-González P, Martínez-Jiménez A, Balderas López JA (2016) Biological synthesis and characterization of gold nanoparticles (AuNPs) using plant extracts. J Nanomater Mol Nanotechnol 5: 4. doi: 10.4172/2324-8777.1000192
Chen X, Zhao X, Gao Y, Yin J, Bai M, Wang F (2018) Green synthesis of gold nanoparticles using carrageenan oligosaccharide and their in vitro antitumor activity. Mar Drugs 16: 277. doi: 10.3390/md16080277
Demir E, Turna F, Vales G, Kaya B, Creus A, Marcos R (2013) In vivo genotoxicity assessment of titanium, zirconium and alumunium nanoparticles, and their microparticulated forms, in Drosophila. Chemosphere 93: 2304–2310. doi: 10.1016/j.chemosphere.2013.08.022
Devatha CP, Thalla AK (2018) Chapter 7 - Green synthesis of nanomaterials. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (Eds). Synthesis of Inorganic Nanomaterials: Advances and Key Technologies. Pp 169–184. Woodhead Publishing, Duxford UK. doi: 10.1016/B978-0-08-101975-7.00007-5
Dewi AKT, Kartini, Sukweenadhi J, Avanti C (2019) Karakter fisik dan aktivitas antibakteri nanopartikel perak hasil green synthesis menggunakan ekstrak air daun sendok (Plantago major L.). Pharm Sci Res 6: 69–81. doi: 10.7454/psr.v6i2.4220
Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R (2019) Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett 236: 498–502. doi: 10.1016/j.matlet.2018.10.156
Dubey SP, Lahtinen M, Sillanpaa M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 264: 34–41. doi: 10.1016/j.colsurfa.2010.04.023
Dutta PP, Bordoloi M, Gogoi K, Roy S, Narzary B, Bhattacharryya DR, Mohapatra PK, Mazumder B (2017) Antimalarial silver and gold nanoparticles: Green synthesis, characterization and in vitro study. Biomed Pharmacother 91: 567–580. doi: 10.1016/j.biopha.2017.04.032
Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85: 743–750. doi: 10.1007/s00204-010-0545-5
Gadhi TA, Hernandez S, Castellino M, Chiodoni A, Husak T, Barrera G, Allia P, Russo N, Tagliaferro A (2018) Single BiFeO3 and mixed BiFeO3/Fe2O3/Bi2Fe4O9 ferromagnetic photocatalysts for solar light driven water oxidation and dye pollutants degradation. J Ind Eng Chem 63: 437–448. doi:10.1016/j.jiec.2018.03.004
Gangapuram BR, Bandi R, Alle M, Dadigala R, Kotu GM, Guttena V (2018) Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J Mol Struct 1167: 305–315. doi: 10.1016/j.molstruc.2018.05.004
Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemichal, physical and green synthesis, classification, characterization and application of nanoparticles. Green Chem Lett Rev 13: 223–245. doi: 10.1080/17518253.2020.1802517
Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasite and malarial mosquitoes. Parasitol Int 65: 276–284. doi: 10.1016/j.parint.2016.02.003
Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, Tamilselvan S, Bennelli G, Parumal P (2017) Ag nanoparticles synthesized using B-caryophyllene isolated from Marruya koenigii: Antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). J Clust Sci 28: 1667–1684. doi: 10.1007/s10876-017-1180-6
Kazimirova A, Baranokova M, Staruchova M, Drlickova M, Volkovova K, Dusinska M (2019) Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo, and in vivo. Mutat Res 843: 57–65. doi: 10.1016/j.mrgentox.2019.05.001
Kemenkes (2019) Buku Saku Tatalaksana Kasus Malaria. Dirjen Pencegahan dan Pengendalian Penyakit, Kementerian Kesehatan Republik Indonesia, Jakarta
Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17: 4019–4024. doi: 10.1088/0957-4484/17/16/004
Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69-70: 329–334. doi: 10.1016/S0921-5107(99)00298-6
Latifah N, Subarnas A, Chaerunisaa (2020) Antimalaria medicine and its mechanism: A review. Majalah Farmasutika 5: 39–48. doi: 10.24198/mfarmasetika.v5i1.25927
Lee JH, Ju JE, Kim BI, Pak PJ, Coi EK, Lee HS, Chung N (2014) Rod?shaped iron oxide nanoparticles are more toxic than sphere?shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33: 2759–2766. doi: 10.1002/etc.2735
Lourenço IM, Pieretti JC, Nascimento MHM, Lombello CB, Seabra AB (2019) Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energ Ecol Environ 4: 261–270. doi: 10.1007/s40974-019-00134-5
Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L (1999) Gold nanoparticles: Production, reshaping, and thermal charging. J Nanoparticle Res 1: 243–251. doi: 10.1023/A:1010012802415
Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe?O?) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18: 5954–5964. doi: 10.3390/molecules18055954
Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108: 1541–1549. doi: 10.1007/s00436-010-2212-4
Martien R, Adhyatmika, Irianto IDK, Farida V, Sari DP (2012) Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat. Majalah Farmaseutik 8: 133–144. doi: 10.22146/farmaseutik.v8i1.24067
Mishra A, Kaushik NK, Sardar M, Sahal D (2013) Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B Biointerfaces 111: 713–718. doi: 10.1016/j.colsurfb.2013.06.036
Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153: 129–138. doi: 10.1016/j.exppara.2015.03.017
Mythili R, Selvankumar T, Srinivasan P, Sengottaiyan A, Sabastinraj J, Ameen F, Al-Sabri A, Kamala-Kannan S, Govarthanan M, Kim H (2018) Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste. J Mol Liq 262: 318–321. doi: 10.1016/j.molliq.2018.04.087
Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41: 5723–5730. doi: 10.1007/s11164-014-1696-4
Ouano JJS, Que MCO, Basilia BA, Alguno AC (2018) Controlling the absorption spectra of gold nanoparticles synthesized via green synthesis using brown seaweed (Sargassum crassifolium) extract. In: Amemiya T, Lei X, Peng XQ (Eds). Key Engineering Materials, pp. 78–82. Trans Tech Publications, Switzerland. doi: 10.4028/www.scientific.net/KEM.772.78
Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3: 208–217
Paolo M, Paolo A, Alessandro C (2012) Nanoparticles. In: Bhushan B (Ed). Encyclopedia of Nanotechnology. Springer, Dordrecht. doi: 10.1007/978-90-481-9751-4_236
Patra JK, Baek KH (2014) Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J Nanomater 2014: 417305. doi: 10.1155/2014/417305
Prasetia E, Firdaus ML, Elvianawati (2019) Upaya peningkatan sensitivitas nanopartikel perak untuk analisis ion merkuri (II) secara citra digital dengan penambahan NaCl. J Alotrop 3: 139–147
Rahman K, Khan SU, Fahad S, Chang MX, Abbas A, Khan WU, Rahman L, Ul Haq Z, Nabi G, Khan D (2019) Nano-biotechnology: A new approach to treat and prevent malaria. Int J Nanomedicine 14: 1401–1410. doi: 10.2147/IJN.S190692
Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118: 196 203. doi: 10.1016/j.actatropica.2011.03.003
Rotimi L, Ojemaye MO, Okoh OO, Sadimenko A, Okoh AI (2019) Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem Lett Rev 12: 61–68. doi: 10.1080/17518253.2019.1569730
Saber H, Alwaleed EA, Ebnalwaled KA, Sayed A, Salem W (2017) Efficacy of silver nanoparticles mediated by Jania rubens and Sargassum dentifolium macroalgae; caharacterization and biomedical aplplication. Egypt J Basic Appl Sci 4: 249–255. doi: 10.1016/j.ejbas.2017.10.006
Saha SJ, Siddiqui AA, Pramanik S, Saha D, De R, Mazumder S, Debsharma S, Nag S, Banerjee C, Bandyopadhyay U (2019) Hydrazonophenol, a food vacuole-targetes and ferriprotoporphyrin IX-interacting chemotype prevents drug-resistant malaria. ACS Infect Dis 5: 63–73. doi: 10.1021/acsinfecdis.8b00178
Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. e-J Chem 6: 61–70. doi: 10.1155/2009/734264
Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73: 332–338. doi: 10.1016/j.colsurfb.2009.06.005
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8: 7278–7308. doi: 10.3390/ma8115377
Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core – Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275: 496–502. doi: 10.1016/j.jcis.2004.03.003
Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res 745: 84–91. doi: 10.1016/j.mrgentox.2011.12.009
Sherman IW (1998) Malaria: Parasite Biology, Pathogenesis, and Protection. American Society for Microbiology Press, Washington DC
Sigh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34: 588–599. doi: 10.1016/j.tibtech.2016.02.006
Singh AK, Tiwari R, Singh VK, Singh P, Khadim SR, Singh U, Laxmi, Srivastava V, Hasan SH, Asthana RK (2019) Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J Drug Deliv Sci Technol 51: 164–176. doi: 10.1016/j.jddst.2019.02.023
Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC (2015) Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 44: 811–816. doi: 10.3109/21691401.2015.1008514
Sun L, Li Y, Liu X, Jin M, Zhang L, Du Z, Guo C, Huang P, Sun Z (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 25: 1619–1629. doi: 10.1016/j.tiv.2011.06.012
Tian J, Wong KKY, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2: 129–136. doi: 10.1002/cmdc.200600171
Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size. Appl Surf Sci 202: 80–85. doi: 10.1016/S0169-4332(02)00936-4
Umamaheswari C, Lakshmanan A, Nagarajan NS (2018) Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J Photochem Photobiol B, Biol 178: 33–39. doi: 10.1016/j.jphotobiol.2017.10.017
Wac?awek S, Gon?uková Z, Adach K, Fija?kowski M, ?erník M (2018) Green synthesis of gold nanoparticles using Artemisia dracunculus extract: Control of the shape and size by varying synthesis conditions. Environ Sci Pollut Res int 25: 24210–24219. doi: 10.1007/s11356-018-2510-4
Wang L, Wu Y, Xie J, Wu S, Wu Z (2018) Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extract. Mater Sci Eng C Mater Biol Appl 86: 1–8. doi: 10.1016/j.msec.2018.01.003
WHO (2019) Global Malaria Programme. World Health Organization https://www.who.int/malaria/about_us/en/. Accessed 4 Oct 2020
WHO (2021) World Malaria Report 2020: 20 Years of Global Progress and Challenges. World Health Organization. https://www.who.int/publications/i/item/9789240015791. Accessed 19 April 2021
Wu H, Zhang J (2018) Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective. Saudi Pharm J 26: 205–210. doi: 10.1016/j.jsps.2017.12.010
Yulizar Y, Kadja GTM, Safaat M (2016) Well-exposed gold nanoclusters on Indonesia natural zeolite: A highly active and reusable catalyst for the reduction of p-nitrophenol. Reac Kinet Mech Cat 117: 353–363. doi: 10.1007/s11144-015-0916-2
Zayadi RA, Abu Bakar F, Ahmad MK (2019) Elucidation of synergistic effect of eucalyptus globulus honey and Zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties. Sustain Chem Pharm 13: 100156. doi: 10.1016/j.scp.2019.10015