TINJAUAN TEKNOLOGI INAKTIVASI VIRUS UNTUK PENANGGULANGAN PANDEMI COVID-19

Main Article Content

Joko prayitno

Abstract

Inaktivasi virus SARS-CoV-2 merupakan salah satu upaya global untuk mengurangi penyebaran Covid-19. Aplikasi teknologi inaktivasi virus ini banyak bersandar pada pengetahuan mengenai karakteristik dan daya tahan virus ini pada permukaan benda dan hal-hal yang merusak struktur virus tersebut. Metode inaktivasi virus yang banyak digunakan adalah perlakuan dengan bahan kimia dan perlakuan secara fisik yaitu dengan menggunakan larutan disinfektan hidrogen peroksida, larutan hipoklorit dan sinar UV. Dalam tulisan ini, peluang aplikasi teknologi inaktivasi virus SARS-CoV-2 yang dibahas adalah teknologi disinfeksi ruangan, disinfeksi permukaan benda dan dekontaminasi alat pelindung diri. Teknologi disinfeksi ruangan khususnya pada ruangan tertutup dengan ventilasi yang kurang baik atau resirkulasi udara tertutup adalah dengan menggunakan kombinasi perlakuan sinar UV dengan filter. Teknologi disinfeksi permukaan benda menggunakan teknik penyemprotan atau pengkabutan larutan disinfektan, sedangkan teknologi dekontaminasi alat pelindung diri dilakukan dengan perlakuan sinar UV atau dengan bahan kimia. Pengembangan dan aplikasi lanjut dari teknologi inaktivasi virus ini akan membantu upaya nasional dalam penanggulangan penyebaran Covid-19.

Article Details

How to Cite
prayitno, J. (2023). TINJAUAN TEKNOLOGI INAKTIVASI VIRUS UNTUK PENANGGULANGAN PANDEMI COVID-19. Jurnal Bioteknologi Dan Biosains Indonesia, 8(1), 137–154. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1848
Section
Articles

References

Aboubakr HA, Sharafeldin TA, Goyal SM (2020) Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis 68: 296-312. doi: 10.1111/tbed.13707

Ahmed R, Mulder R (2021) A Systematic review on the efficacy of vaporized hydrogen peroxide as a non-contact decontamination system for pathogens associated with the dental environment. Int J Environ Res Public Health 18: 4748. doi: 10.3390/ijerph18094748

Biryukov J, Boydston JA, Dunning RA, Yeager JJ, Wood S, Reese AL, Ferris A, Miller D, Weaver W, Zeitouni NE, Phillips A, Freeburger D, Hooper I, Ratnesar-Shumate S, Yolitz J, Krause M, Williams G, Dawson DG, Herzog A, Dabisch P, Wahl V, Hevey MC, Altamura LA (2020) Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere 5: e00441-20. doi: 10.1128/mSphere.00441-20

Boskoski I, Gallo C, Wallace MB, Costamagna G (2020) COVID-19 pandemic and personal protective equipment shortage?: protective efficacy comparing masks and scientific methods for respirator reuse. Gastrointest Endosc 92: 519–523. doi: 10.1016/j.gie.2020.04.048

Boyce JM (2009) New approaches to decontamination of rooms after patients are discharged. Infect Control Hosp Epidemiol 30: 515-517. doi: 10.1086/598999

Byrns G, Barham B, Yang L, Webster K, Rutherford G, Steiner G, Petras D, Scannell M (2017) The uses and limitations of a hand-held germicidal ultraviolet wand for surface disinfection. J Occup Environ Hyg 14: 749–757. doi: 10.1080/15459624.2017.1328106

Cadnum JL, Jencson AL, Livingston SH, Li DF, Redmond SN, Pearlmutter B, Wilson BM, Donskey CJ (2020) Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2. Am J Infect Control 48: 951–954. doi: 10.1016/j.ajic.2020.06.002

Cadnum JL, Mana TSC, Jencson A, Thota P, Kundrapu S, Donskey CJ (2015) Effectiveness of a hydrogen peroxide spray for decontamination of soft surfaces in hospitals. Am J Infect Control 43: 1357–1359. doi: 10.1016/j.ajic.2015.07.016

Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, Xing F, Liu J, Yip CCY, Poon RWS, Tsoi HW, Lo SKF, Chan KH, Poon VKM, Chan WM, Ip JD, Cai JP, Cheng VCC, Chen H, Hui CKM, Yuen KY (2020a) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 395: 514–523. doi: 10.1016/S0140-6736(20)30154-9

Chan KH, Peiris JSM, Lam SY, Poon LLM, Yuen KY, Seto WH (2011) The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol 2011: 734690. doi: 10.1155/2011/734690

Chan KH, Sridhar S, Zhang RR, Chu H, Fung AYF, Chan G, Chan JFW, To KKW, Hung IFN, Cheng VCC, Yuen KY (2020b) Factors affecting stability and infectivity of SARS-CoV-2. J Hosp Infect 106: 226-231. doi: 10.1016/j.jhin.2020.07.009

Chen T, O’Keeffe J (2020) COVID-19 in indoor environments — Air and surface disinfection measures. National Collaborating Center for Environmental Health 2020: 1–25

Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, Lim XF, Lim AS, Sutjipto S, Lee PH, Son TT, Young BE, Milton DK, Gray GC, Schuster S, Barkham T, De PP, Vasoo S, Chan M, Ang BSP, Tan BH, Leo YS, Ng OT, Wong MSY, Marimuthu K, Lye DC, Lim PL, Lee CC, Ling LM, Lee L, Lee TH, Wong CS, Sadarangani S, Lin RJ, Ng DHL, Sadasiv M, Yeo TW, Choy CY, Tan GSE, Dimatatac F, Santos IF, Go CJ, Chan YK, Tay JY, Tan JYL, Pandit N, Ho BCH, Mendis S, Chen YYC, Abdad MY, Moses D (2020) Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun 11: 2800. doi: 10.1038/s41467-020-16670-2

Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, Peiris M, Poon LLM (2020) Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1: e10. doi: 10.1016/s2666-5247(20)30003-3

Choi H, Chatterjee P, Lichtfouse E, Martel JA, Hwang M, Jinadatha C, Sharma VK (2021) Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: A review. Environ Chem Lett 19: 1945–1951. doi: 10.1007/s10311-021-01180-4

Chou M-D, Lee K-T (1996) Parameterizations for the absorption of solar radiation by water vapor and ozone. J Atmos Sci 53: 1203-1208. doi: 10.1175/1520-0469(1996)053<1203:pftaos>2.0.co;2.

Christopherson DA, Yao WC, Lu M, Vijayakumar R, Sedaghat AR (2019) High-Efficiency Particulate Air Filters in the Era of COVID-19: Function and Efficacy.1–3. doi:10.1177/019459982 0941838.

Dabisch P, Schuit M, Herzog A, Beck K, Wood S, Krause M, Miller D, Weaver W, Freeburger D, Hooper I, Green B, Williams G, Holland B, Bohannon J, Wahl V, Yolitz J, Hevey M, Ratnesar-Shumate S (2021) The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci Technol 55: 142-153. doi: 10.1080/02786826.2020.1829536

Darnell MER, Taylor DR (2006) Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion 46: 1770–1777. doi: 10.1111/j.1537-2995.2006.00976.x

Derraik JGB, Anderson WA, Connelly EA, Anderson YC (2020) Rapid review of SARS-CoV-1 and SARS-CoV-2 viability, susceptibility to treatment, and the disinfection and reuse of PPE, particularly filtering facepiece respirators. Int J Environ Res Public Health 17: 6117. doi: 10.3390/ijerph17176117

Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, Tong S (2020) Epidemiology of COVID-19 among children in China. Pediatrics 145: e20200702. doi: 10.1542/peds.2020-0702

Duan SM, Zhao XS, Wen RF, Huang JJ, Pi GH, Zhang SX, Han J, Bi SL, Ruan L, Dong XP (2003) Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci 16: 246-255. PMID: 14631830

Fennelly KP (2020) Particle sizes of infectious aerosols?: Implications for infection control. Lancet Respir Med 8: 914–924. doi: 10.1016/S2213-2600(20)30323-4

Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J (2020) The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5: 536–544. doi: 10.1038/s41564-020-0695-z

Greatorex JS, Page RF, Curran MD, Digard P, Enstone JE, Wreghitt T, Powell PP, Sexton DW, Vivancos R, Nguyen-Van-Tam JS (2010) Effectiveness of common household cleaning agents in reducing the viability of human influenza A/H1N1. PLoS One 5: e8987. doi: 10.1371/journal.pone.0008987

Heilingloh CS, Aufderhorst UW, Schipper L, Dittmer U, Witzke O, Yang D, Zheng X, Sutter K, Trilling M, Alt M, Steinmann E, Krawczyk A (2020) Susceptibility of SARS-CoV-2 to UV irradiation. Am J Infect Control 48: 1273-1275. doi: 10.1016/j.ajic.2020.07.031

Herman J, Biegel B, Huang L (2021) Inactivation times from 290 to 315 nm UVB in sunlight for SARS coronaviruses CoV and CoV-2 using OMI satellite data for the sunlit Earth. Air Qual Atmos Health 14: 217-233. doi: 10.1007/s11869-020-00927-2.

Hermans RD, Langowski PH, Ninomura PT, Seth AK, Cohen T, Shaughnessy DE, Freeman GA, Sheerin MP, Hendrickson GL, Weber RJ, Keen MR, Woolsey ME, Kennedy SD, Jones BW, Crowther HF, Kohler JA, Baker RG, Lutz JD, Martin RM, Bushby ST, Myers F, Cooper KW, Newman HM (2008) Ventilation of health care facilities. ASHRAE/ASHE Standard 170-2008.

Herndon JM, Hoisington RD, Whiteside M (2018) Deadly ultraviolet UV-C and UV-B penetration to earth’s surface: Human and environmental health implications. J Geogr Environ Earth Sci Int 14: 1–11. doi: 10.9734/jgeesi/2018/40245

Hu D, Zhu C, Ai L, He T, Wang Y, Ye F, Yang L, Ding C, Zhu X, Lv R, Zhu J, Hassan B, Feng Y, Tan W, Wang C (2018) Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect 7: 154. doi: 10.1038/s41426-018-0155-5

Ing EB, Xu QA, Salimi A, Torun N (2020) Physician deaths from corona virus (COVID-19) disease. Occup Med (Lond) 70: 370-374. doi: 10.1093/occmed/kqaa088

Iyengar KP, Ish P, Upadhyaya GK, Malhotra N, Vaishya R, Jain VK (2020) COVID-19 and mortality in doctors. Diabetes Metab Syndr 14: 1743-1746. doi: 10.1016/j.dsx.2020.09.003

Kahn JS, McIntosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24: S223-S227. doi: 10.1097/01.inf.0000188166.17324.60

Khazova M, Johnstone L, Naldzhiev D, O'Hagan JB (2021) Survey of home-use UV disinfection products. Photochem Photobiol 97: 560–565. doi: 10.1111/php.13423

Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H (2020) The Architecture of SARS-CoV-2 transcriptome. Cell 181: 914-921.e10. doi: 10.1016/j.cell.2020.04.011

Kitagawa H, Nomura T, Nazmul T, Omori K, Shigemoto N, Sakaguchi T, Ohge H (2021) Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am J Infect Control 49: 299-301. doi: 10.1016/j.ajic.2020.08.022

Lednicky JA, Lauzardo M, Fan ZH, Jutla A, Tilly TB, Gangwar M, Usmani M, Shankar SN, Mohamed K, Eiguren-Fernandez A, Stephenson CJ, Alam MM, Elbadry MA, Loeb JC, Subramaniam K, Waltzek TB, Cherabuddi K, Morris JG, Wu CY (2020) Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis 100: 476–482. doi: 10.1016/j.ijid.2020.09.025

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Man Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382: 1199-1207. doi: 10.1056/NEJMoa2001316

Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, Sun L, Duan Y, Cai J, Westerdahl D, Liu X, Xu K, Ho KF, Kan H, Fu Q, Lan K (2020) Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582: 557-560. doi: 10.1038/s41586-020-2271-3

Lombardi ME, Ladman BS, Alphin RL, Benson ER (2008) Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis 52: 118–123. doi: 10.1637/8055-070907-reg

Masotti F, Cattaneo S, Stuknyt? M, De Noni I (2019) Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air. Trends Food Sci Technol 90: 147-156. doi: 10.1016/j.tifs.2019.06.006

Miller-Leiden S, Lobascio C, Nazaroff WW, Macher JM (1996) Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control. J Air Waste Manag Assoc 46: 869–882. doi: 10.1080/10473289.1996.10467523

Millet JK, Whittaker GR (2015) Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 202: 120–134. doi: 10.1016/j.virusres.2014.11.021

Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, Cao J, Dancer S, Floto A, Franchimon F, Haworth C, Hogeling J, Isaxon C, Jimenez JL, Kurnitski J, Li Y, Loomans M, Marks G, Marr LC, Mazzarella L, Melikov AK, Miller S, Milton DK, Nazaroff W, Nielsen P V., Noakes C, Peccia J, Querol X, Sekhar C, Seppänen O, Tanabe SI, Tellier R, Tham KW, Wargocki P, Wierzbicka A, Yao M (2020) How can airborne transmission of COVID-19 indoors be minimised? Environ Int 142: 105832. doi: 10.1016/j.envint.2020.105832

Mphaphlele M, Dharmadhikari AS, Jensen PA, Rudnick SN, van Reenen TH, Pagano MA, Leuschner W, Sears TA, Milonova SP, van der Walt M, Stoltz AC, Weyer K, Nardell EA (2015) Institutional tuberculosis transmission. Controlled trial of upper room ultraviolet air disinfection: A basis for new dosing guidelines. Am J Respir Crit Care Med 192: 477–484. doi: 10.1164/rccm.201501-0060OC

Nardell EA (2021) Air disinfection for airborne infection control with a focus on COVID-19?: Why germicidal UV is essential. Photochem Photobiol 97: 493–497. doi: 10.1111/php.13421

Nardell EA, Nathavitharana RR (2020) Airborne spread of SARS-CoV-2 and a potential role for air disinfection. JAMA 324: 141–142. doi: 10.1001/jama.2020.7603

Nienhaus A, Hod R (2020) COVID-19 among health workers in germany and Malaysia. Int J Environ Res Public Health 17: 4881. doi: 10.3390/ijerph17134881

Nissen K, Krambrich J, Akaberi D, Hoffman T, Ling J, Lundkvist Å, Svensson L, Salaneck E (2020) Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Sci Rep 10: 19589. doi: 10.1038/s41598-020-76442-2

Pagat AM, Seux-Goepfert R, Lutsch C, Lecouturier V, Saluzzo JF, Kusters IC (2007) Evaluation of SARS-coronavirus decontamination procedures. Appl Biosaf 12: 100-108. doi: 10.1177/153567600701200206

Pan J, Yao Y, Liu Z, Meng X, Ji JS, Qiu Y, Wang W, Zhang L, Wang W, Kan H (2021) Warmer weather unlikely to reduce the COVID-19 transmission: An ecological study in 202 locations in 8 countries. Sci Total Environ 753: 142272. doi: 10.1016/j.scitotenv.2020.142272

Pani SK, Lin NH, RavindraBabu S (2020) Association of COVID-19 pandemic with meteorological parameters over Singapore. Sci Total Environ 740: 140112. doi: 10.1016/j.scitotenv.2020.140112

Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel RN (2020) Heat inactivation of different types of SARS-CoV-2 samples: What protocols for biosafety, molecular detection and serological diagnostics? Viruses 12: 735. doi: 10.3390/v12070735

Ratnesar-Shumate S, Williams G, Green B, Krause M, Holland B, Wood S, Bohannon J, Boydston J, Freeburger D, Hooper I, Beck K, Yeager J, Altamura LA, Biryukov J, Yolitz J, Schuit M, Wahl V, Hevey M, Dabisch P (2020) Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. J Infect Dis 222: 214-222. doi: 10.1093/infdis/jiaa274

Rodriguez-Martinez CE, Sossa-Briceño MP, Cortés JA (2020) Decontamination and reuse of N95 filtering facemask respirators: A systematic review of the literature. Am J Infect Control 48: 1520-1532. doi: 10.1016/j.ajic.2020.07.004

Saini V, Sikri K, Batra SD, Kalra P, Gautam K (2020) Development of a highly effective low?cost vaporized hydrogen peroxide?based method for disinfection of personal protective equipment for their selective reuse during pandemics. Gut Pathog 12: 29. doi: 10.1186/s13099-020-00367-4

Schoeman D, Fielding BC (2019) Coronavirus envelope protein: Current knowledge. Virol J 16: 69. doi: 10.1186/s12985-019-1182-0

Schuit M, Gardner S, Wood S, Bower K, Williams G, Freeburger D, Dabisch P (2020a) The influence of simulated sunlight on the inactivation of influenza virus in aerosols. J Infect Dis 221: 372–378. doi: 10.1093/infdis/jiz582

Schuit M, Ratnesar-Shumate S, Yolitz J, Williams G, Weaver W, Green B, Miller D, Krause M, Beck K, Wood S, Holland B, Bohannon J, Freeburger D, Hooper I, Biryukov J, Altamura LA, Wahl V, Hevey M, Dabisch P (2020b) Airborne SARS-CoV-2 is rapidly inactivated by simulated sunlight. J Infect Dis 222: 564–571. doi: 10.1093/infdis/jiaa334

Schulz-Stübner S, Kosa R, Henker J, Mattner F, Friedrich A (2019) Is UV-C “light wand” mobile disinfection in air ambulance helicopters effective?? Infect Control Hosp Epidemiol 40: 1323-1326. doi: 10.1017/ice.2019.225.

Secretariat, M. A. (2005). Air cleaning technologies: an evidence-based analysis. Ontario Health Technology Assessment Series, 5(17):1.

Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, Palmisani J, Di Gilio A, Piscitelli P, Miani A (2020) Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough. Int J Environ Res Public Health 17: 2932. doi: 10.3390/ijerph17082932

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 24: 91-98. doi: 10.1016/j.jare.2020.03.005

Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540: 539–543. doi: 10.1038/nature20167

Simmons SE, Carrion R, Alfson KJ, Staples HM, Jinadatha C, Jarvis WR, Sampathkumar P, Chemaly RF, Khawaja F, Povroznik M, Jackson S, Kaye KS, Rodriguez RM, Stibich MA (2020) Deactivation of SARS-CoV-2 with pulsed-xenon ultraviolet light: Implications for environmental COVID-19 control. Infect Control Hosp Epidemiol 42: 127-130. doi: 10.1017/ice.2020.399

Somsen GA, van Rijn C, Kooij S, Bem RA, Bonn D (2020) Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir Med 8: 658–659. doi: 10.1016/S2213-2600(20)30245-9

Steinberg BE, Aoyama K, McVey M, Levin D, Siddiqui A, Munshey F, Goldenberg NM, Faraoni D, Maynes JT (2020) Efficacy and safety of decontamination for N95 respirator reuse: A systematic literature search and narrative synthesis. Can J Anesth 67: 1814-1823. doi: 10.1007/s12630-020-01770-w

Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li N, Shen J, Lv Y, Pan L, Ding P, Wang X, Wang Y, MacIntyre CR, Shi X (2020a) Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int 144: 106039. doi: 10.1016/j.envint.2020.106039

Tang Y-W, Schmitz JE, Persing DH, Stratton CW (2020b) Laboratory diagnosis of COVID-19: Current issues and challenges. J Clin Microbiol 58: e00512-20. doi: 10.1128/JCM.00512-20

Tosepu R, Gunawan J, Effendy DS, Ahmad OAI, Lestari H, Bahar H, Asfian P (2020) Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci Total Environ 725: 138436. doi: 10.1016/j.scitotenv.2020.138436

Tseng CC, Li CS (2005) Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation. Aerosol Sci Technol 39: 1136–1142. doi: 10.1080/02786820500428575

Tseng CC, Li CS (2007) Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg 4: 400–405. doi: 10.1080/15459620701329012

Uddin M, Mustafa F, Rizvi TA, Loney T, Al Suwaidi H, Al-Marzouqi AHH, Eldin AK, Alsabeeha N, Adrian TE, Stefanini C, Nowotny N, Alsheikh-Ali A, Senok AC (2020) SARS-CoV-2/COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 12: 526. doi: 10.3390/v12050526

van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382: 1564-1567. doi: 10.1056/nejmc2004973

Walker CM, Ko G (2007) Effect of ultraviolet germicidal irradiation on viral aerosols. Environ Sci Technol 41: 5460–5465. doi: 10.1021/es070056u

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181: 281-292.e6. doi: 10.1016/j.cell.2020.02.058

Wang Q, Wu J, Wang H, Gao Y, Liu Q, Mu A, Ji W, Yan L, Zhu Y, Zhu C, Fang X, Yang X, Huang Y, Gao H, Liu F, Ge J, Sun Q, Yang X, Xu W, Liu Z, Yang H, Lou Z, Jiang B, Guddat LW, Gong P, Rao Z (2020) Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182: 417-428.e13. doi: 10.1016/j.cell.2020.05.034

WHO (2020) Rational use of personal protective equipment (PPE) for coronavirus disease (COVID-19). Interim guidance 19 March 2020. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/331498/WHO-2019-nCoV-IPCPPE_use-2020.2-eng.pdf

WHO (2021) WHO coronavirus (COVID-19) dashboard, World Health Organization. https://covid19.who.int/

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020a) A new coronavirus associated with human respiratory disease in China. Nature 579: 265–269. doi: 10.1038/s41586-020-2008-3

Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, Du M, Liu M (2020b) Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci Total Environ 729: 139051. doi: 10.1016/j.scitotenv.2020.139051

Xu B, Gutierrez B, Mekaru S, Sewalk K, Goodwin L, Loskill A, Cohn EL, Hswen Y, Hill SC, Cobo MM, Zarebski AE, Li S, Wu CH, Hulland E, Morgan JD, Wang L, O’Brien K, Scarpino SV, Brownstein JS, Pybus OG, Pigott DM, Kraemer MUG (2020a) Epidemiological data from the COVID-19 outbreak, real-time case information. Sci Data 7: 106. doi: 10.1038/s41597-020-0448-0

Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, Li SB, Wang HY, Zhang S, Gao HN, Sheng JF, Cai HL, Qiu YQ, Li LJ (2020b) Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 368: m606. doi: 10.1136/bmj.m606