PENINGKATAN PRODUKSI SEFALOSPORIN C DARI Acremonium chrysogenum CB2/11/1.10.6 DENGAN OPTIMASI MEDIA MENGGUNAKAN METODE RESPON PERMUKAAN

Main Article Content

Erwahyuni Prabandari
Dyah Noor Hidayati
Diana Dewi
Eni Dwi Islamiati
Khaswar Syamsu

Abstract

Cephalosporin is a β-lactam antibiotic produced by Acremonium chrysogenum using submerged fermentation. Carbon and nitrogen are the most influential medium ingredients for cephalosporin formation. The purpose of this study was to obtain the best composition of media for cephalosporin production. Response surface methodology was used for production optimization. The results showed that molasses of 70 g/Lwas the best carbon source, while the best nitrogen source was the combination of corn steep liquor, urea and ammonium sulphate. DL-methionine, carbon, and nitrogen source significantly affected  the production of cephalosporin C. The mathematically modelled optimization showed that the highest production of cephalosporin C (3876 mg/L) was obtained using medium composition of 68.28 g/L molasses, 71.61 g/nitrogen, and 0.4 g/DL-methionine. Laboratory verification using the same medium composition produced 3696 mg/L of cephalosporin C, being 4.65% different from the mathematically optimized results. Medium optimization increased the cephalosprin C production which was 1.48 times higher than that using the previous medium, where the maximum production was only 2487 mg / L.

Article Details

How to Cite
Prabandari, E., Hidayati, D. N., Dewi, D., Islamiati, E. D., & Syamsu, K. (2023). PENINGKATAN PRODUKSI SEFALOSPORIN C DARI Acremonium chrysogenum CB2/11/1.10.6 DENGAN OPTIMASI MEDIA MENGGUNAKAN METODE RESPON PERMUKAAN. Jurnal Bioteknologi Dan Biosains Indonesia, 4(1), 10–20. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1880
Section
Articles

References

Bas D, Boyaci IH (2007) Modeling and optimization I: Usability of response surface methodology. J Food Engineer 78:836-845. doi: 10.1016/j.jfoodeng.2005.11.024

Bissolino P, Alpegiani M, Perrone E, Orezzi P, Cassinelli G, Franceschi G (1991) Beta-lactam derivatives of the 4-acylcephem sulphone and 3-acylpenam sulphone-type. Patent No US 5077286 A

Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21-32. doi: 10.1038/nrmicro2916

Demian AL, Vaishnav P (2006) Involvement of nitrogen-containing compounds in β-lactam biosynthesis and its control. Crit Rev Biotechnol 26: 67-82. doi: 10.1080/07388550600671466

Departemen Kesehatan RI (2013) Pelayanan Informasi Obat Nasional. Dirjen YanFar dan Alkes. Depkes

El-Gendy MMA (2012) Production of glucoamylase by marine endophytic Aspergillus sp. JAN-25 under optimized solid-state fermentation conditions on agro residues. Australian J Basic Appl Sci 6:41-54

Gohar UF, Mukhtar H, Ul-Haq I (2013) Studies on the nutritional parameters for cephalosporin biosynthesis from Acremonium chrysogenum by submerged fermentation. Pak J Bot 45:1057-1062

Hegde S, Bhadri G, Narsapur K, Koppal S, Oswal P, Turmuri N, Jumnal V, Hungund B (2013) Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis. J Bioproces Biotechniq 4:1. doi: 10.4172/2155-9821.1000142

Horwitz W, Latimer GW (2005) Official methods of analysis of AOAC International. 18th edition, Vol 1: Agricultural chemicals, contaminants, drugs. AOAC International, Maryland USA

Karthikeyan K, Nanthakumar K, Shanthi K, Lakshmanaperumalsamy P (2010) Response surface methodology for optimization of culture conditions for dye decolorization by a fungus, Aspergillus niger HM11 isolated from dye affected soil. Iran J Microbiol 2: 213-222

Kementerian Kesehatan RI (2016) Profil Kesehatan Indonesia Tahun 2015. Kementerian Kesehatan RI ISBN 978-602-416-065-4. Jakarta

Kiran B, Pathak K, Kumar R, Deshmukh D (2016) Statistical optimization using central composite design for biomass and lipid productivity of microalga: A step towards enhanced biodiesel production. Ecol Eng 92:73–81. doi: 10.1016/j.ecoleng.2016.03.026

Lee MS, Lim JS, Kim CH, Oh KK, Hong SI, Kim SW (2001) Effect of nutrients and culture conditions on morphology in the seed culture of Cephalosporium acremonnium ATCC 20339. Biotechnol Bioprocess Eng 6:156-160. doi: 10.1007/BF02931963

Li J, Pan Y, Liu G (2013) Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol 61:69-79. doi: 10.1016/j.fgb.2013.10.006

Lotfy WA (2007) Production of cephalosporin C by Acremonium chrysogenum grown on beet molasses: Optimization of process parameters through statistical experimental designs. Res J Microbiol 2:1-12. doi: 10.3923/jm.2007.1.12

Mandenius CF, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191-1203. doi: 10.1002/btpr.67

Manfaati R (2010) Kinetika dan variabel optimum fermentasi asam laktat dengan media campuran tepung tapioka dan limbah cair tahu oleh Rhizopus oryzae. Thesis. Universitas Diponegoro, Semarang

Martin JF, Demain A (2002) Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends in Biotechnol. 20:502-507. doi: 10.1016/S0167-7799(02)02070-X

Muniz CC, Zelaya TEC, Esquivel GR, Fernandez FJ (2007) Penicillin and cephalosporin production: A Historical perspective. Rev Latinoam Microbiol 49:88-98

Nigam VK, Verma R, Kumar A, Kundu S, Ghosh P (2007) Influence of medium constituents on the biosynthesis of cephalosporin-C. Electron J Biotechnol 10:230-239. doi: 10.2225/vol10-issue2-fulltext-8

Palukurty MA, Somalanka SR (2016) Optimization of nutritional parameters for production of alpha amylase using Aspergillus oryzae MTCC 3017 by central composite design. Int J Ind Biotechnol Biomaterial 2:1-10. doi: 10.13140/RG.2.1.4326.5520

Ramos I, Guzman S, Escalante L, Imriskova I, Rodríguez-Sanoja R, Sanchez S, Langley E (2004) Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. Res Microbiol 155:267-274. doi: 10.1016/j.resmic.2004.01.004

Rani AS, Goutham HRVN, Spurthi BS (2015) Optimization of various parameters used in immobilizing Acremonium chrysogenum 1391 for cephalosporin production. Int J Sci Tech 3:42-46

Ruiz B, Chaves A, Forero A, Garcia-Huante Y, Romero A, Sanches M, Rocha D, Sanchez B, Rodriguez-Sanoja R, Sanches S, Langley E (2010) Production of microbial secondary metabolites: Regulation by the carbon source. Crit Rev Microbiol 36:146–167. doi: 10.3109/10408410903489576

Schmitt EK, Hoff B, Kuck U (2004) Regulation of cephalosporin biosynthesis. In: Brakhage AA (ed) Molecular Biotechnology of Fungal β-Lactam Antibiotics and Related Peptide Synthetases, Advances in Biochemical Engineering/ Biotechnology Vol 88, Springer, New York, pp 1–43

Techapun C, Charoenrat T, Watanabe M, Sasaki K, Poosaran N (2002) Optimization of thermostable and alkaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design. Biochem Eng J 12:99-105. doi: 10.1016/S1369-703X(02)00047-5

Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656. doi: 10.3389/fmicb.2014.00656

Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiol 147:2447-2459. doi: 10.1099/00221287-147-9-2447

Xu Y, Li Y, Xu S, Liu Y, Wang X, Tang J (2008) Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition. J Zhejiang Univ Sci B 9:558-566. doi: 10.1631/jzus.B0820038