PENINGKATAN PRODUKSI SEFALOSPORIN C DARI Acremonium chrysogenum CB2/11/1.10.6 DENGAN OPTIMASI MEDIA MENGGUNAKAN METODE RESPON PERMUKAAN
Main Article Content
Abstract
Cephalosporin is a β-lactam antibiotic produced by Acremonium chrysogenum using submerged fermentation. Carbon and nitrogen are the most influential medium ingredients for cephalosporin formation. The purpose of this study was to obtain the best composition of media for cephalosporin C production. Response surface methodology was used for production optimization. The results showed that molasses of 70 g/Lwas the best carbon source, while the best nitrogen source was the combination of corn steep liquor, urea and ammonium sulphate. DL-methionine, carbon, and nitrogen source significantly affected  the production of cephalosporin C. The mathematically modelled optimization showed that the highest production of cephalosporin C (3876 mg/L) was obtained using medium composition of 68.28 g/L molasses, 71.61 g/L nitrogen, and 0.4 g/L DL-methionine. Laboratory verification using the same medium composition produced 3696 mg/L of cephalosporin C, being 4.65% different from the mathematically optimized results. Medium optimization increased the cephalosprin C production which was 1.48 times higher than that using the previous medium, where the maximum production was only 2487 mg / L.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Bas D, Boyaci IH (2007) Modeling and optimization I: Usability of response surface methodology. J Food Engineer 78:836-845. doi: 10.1016/j.jfoodeng.2005.11.024
Bissolino P, Alpegiani M, Perrone E, Orezzi P, Cassinelli G, Franceschi G (1991) Beta-lactam derivatives of the 4-acylcephem sulphone and 3-acylpenam sulphone-type. Patent No US 5077286 A
Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21-32. doi: 10.1038/nrmicro2916
Demian AL, Vaishnav P (2006) Involvement of nitrogen-containing compounds in β-lactam biosynthesis and its control. Crit Rev Biotechnol 26: 67-82. doi: 10.1080/07388550600671466
Departemen Kesehatan RI (2013) Pelayanan Informasi Obat Nasional. Dirjen YanFar dan Alkes. Depkes
El-Gendy MMA (2012) Production of glucoamylase by marine endophytic Aspergillus sp. JAN-25 under optimized solid-state fermentation conditions on agro residues. Australian J Basic Appl Sci 6:41-54
Gohar UF, Mukhtar H, Ul-Haq I (2013) Studies on the nutritional parameters for cephalosporin biosynthesis from Acremonium chrysogenum by submerged fermentation. Pak J Bot 45:1057-1062
Hegde S, Bhadri G, Narsapur K, Koppal S, Oswal P, Turmuri N, Jumnal V, Hungund B (2013) Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis. J Bioproces Biotechniq 4:1. doi: 10.4172/2155-9821.1000142
Horwitz W, Latimer GW (2005) Official methods of analysis of AOAC International. 18th edition, Vol 1: Agricultural chemicals, contaminants, drugs. AOAC International, Maryland USA
Karthikeyan K, Nanthakumar K, Shanthi K, Lakshmanaperumalsamy P (2010) Response surface methodology for optimization of culture conditions for dye decolorization by a fungus, Aspergillus niger HM11 isolated from dye affected soil. Iran J Microbiol 2: 213-222
Kementerian Kesehatan RI (2016) Profil Kesehatan Indonesia Tahun 2015. Kementerian Kesehatan RI ISBN 978-602-416-065-4. Jakarta
Kiran B, Pathak K, Kumar R, Deshmukh D (2016) Statistical optimization using central composite design for biomass and lipid productivity of microalga: A step towards enhanced biodiesel production. Ecol Eng 92:73–81. doi: 10.1016/j.ecoleng.2016.03.026
Lee MS, Lim JS, Kim CH, Oh KK, Hong SI, Kim SW (2001) Effect of nutrients and culture conditions on morphology in the seed culture of Cephalosporium acremonnium ATCC 20339. Biotechnol Bioprocess Eng 6:156-160. doi: 10.1007/BF02931963
Li J, Pan Y, Liu G (2013) Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol 61:69-79. doi: 10.1016/j.fgb.2013.10.006
Lotfy WA (2007) Production of cephalosporin C by Acremonium chrysogenum grown on beet molasses: Optimization of process parameters through statistical experimental designs. Res J Microbiol 2:1-12. doi: 10.3923/jm.2007.1.12
Mandenius CF, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191-1203. doi: 10.1002/btpr.67
Manfaati R (2010) Kinetika dan variabel optimum fermentasi asam laktat dengan media campuran tepung tapioka dan limbah cair tahu oleh Rhizopus oryzae. Thesis. Universitas Diponegoro, Semarang
Martin JF, Demain A (2002) Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends in Biotechnol. 20:502-507. doi: 10.1016/S0167-7799(02)02070-X
Muniz CC, Zelaya TEC, Esquivel GR, Fernandez FJ (2007) Penicillin and cephalosporin production: A Historical perspective. Rev Latinoam Microbiol 49:88-98
Nigam VK, Verma R, Kumar A, Kundu S, Ghosh P (2007) Influence of medium constituents on the biosynthesis of cephalosporin-C. Electron J Biotechnol 10:230-239. doi: 10.2225/vol10-issue2-fulltext-8
Palukurty MA, Somalanka SR (2016) Optimization of nutritional parameters for production of alpha amylase using Aspergillus oryzae MTCC 3017 by central composite design. Int J Ind Biotechnol Biomaterial 2:1-10. doi: 10.13140/RG.2.1.4326.5520
Ramos I, Guzman S, Escalante L, Imriskova I, Rodríguez-Sanoja R, Sanchez S, Langley E (2004) Glucose kinase alone cannot be responsible for carbon source regulation in Streptomyces peucetius var. caesius. Res Microbiol 155:267-274. doi: 10.1016/j.resmic.2004.01.004
Rani AS, Goutham HRVN, Spurthi BS (2015) Optimization of various parameters used in immobilizing Acremonium chrysogenum 1391 for cephalosporin production. Int J Sci Tech 3:42-46
Ruiz B, Chaves A, Forero A, Garcia-Huante Y, Romero A, Sanches M, Rocha D, Sanchez B, Rodriguez-Sanoja R, Sanches S, Langley E (2010) Production of microbial secondary metabolites: Regulation by the carbon source. Crit Rev Microbiol 36:146–167. doi: 10.3109/10408410903489576
Schmitt EK, Hoff B, Kuck U (2004) Regulation of cephalosporin biosynthesis. In: Brakhage AA (ed) Molecular Biotechnology of Fungal β-Lactam Antibiotics and Related Peptide Synthetases, Advances in Biochemical Engineering/ Biotechnology Vol 88, Springer, New York, pp 1–43
Techapun C, Charoenrat T, Watanabe M, Sasaki K, Poosaran N (2002) Optimization of thermostable and alkaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant Streptomyces sp. Ab106, using the central composite experimental design. Biochem Eng J 12:99-105. doi: 10.1016/S1369-703X(02)00047-5
Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656. doi: 10.3389/fmicb.2014.00656
Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in Streptomyces pristinaespiralis. Microbiol 147:2447-2459. doi: 10.1099/00221287-147-9-2447
Xu Y, Li Y, Xu S, Liu Y, Wang X, Tang J (2008) Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition. J Zhejiang Univ Sci B 9:558-566. doi: 10.1631/jzus.B0820038