IMPROVING THE FUNCTION OF CRISPR-CAS9 FOR GENOME EDITING THERAPY: EDITING THE EDITOR

Main Article Content

Alva Sahiri Alexander Supit

Abstract

Gene editing has become reasonably easy since the discovery of clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9). Most genetic diseases cannot be treated causally, and currently available therapies are mainly symptom-based. To treat the etiology of genetic diseases, a firm gene editing therapy is necessary to be established. This posits Cas9-facilitated gene editing as a prospective modality to become a clinically approved therapy in the future to treat genetic disorders. However, until recently, Cas9-based genome editing is still facing several hurdles, including low specificity, low effectiveness, and difficult delivery. Currently available Cas9 nucleases are able to bind to non-specific DNA sequence and produce non-specific cleavage. The efficiency has been relatively low due to the preference of non-homologous end-joining (NHEJ) over homology-directed repair (HDR) by the host cell. Furthermore, in order to deliver Cas9 into the nucleus, multiple physiological barriers have to be overcome. This review discussed recent developments in tackling these three hurdles, ranging from designing the guide RNA using multiple bioinformatics tools, modifying Cas9 structure, as well as packaging the nuclease-guide RNA complex into viral vectors and nanoparticles. Considering the active research on this area, it is expected that CRISPR/Cas9 can be utilized as a clinical therapy in the near future.

Article Details

How to Cite
Supit, A. S. A. (2023). IMPROVING THE FUNCTION OF CRISPR-CAS9 FOR GENOME EDITING THERAPY: EDITING THE EDITOR. Jurnal Bioteknologi Dan Biosains Indonesia, 4(1), 44–51. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1885
Section
Review

References

Bolukbasi MF, Gupta A, Wolfe SA (2015) Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nature Methods 13:41–50. doi: 10.1038/nmeth.3684

Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nature Medicine 21:121–131. doi: 10.1038/nm.3793

Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. doi: 10.1126/science.1258096

Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, Marco E, Gotta GM, Maeder ML, Kennedy EM, Kornepati AVR, Sousa A, Collins MA, Jayaram H, Cullen BR, Bumcrot D (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16:257. doi: 10.1186/s13059-015-0817-8

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826. doi: 10.1038/nbt.2623

Gabriel R, von Kalle C, Schmidt M (2015) Mapping the precision of genome editing. Nat Biotechnol 33:150–152. doi: 10.1038/nbt.3142

Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. doi: 10.1016/j.tibtech.2013.04.004

Ginn SL, Alexander IE, Edelstein ML, Abedi, MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 15:65–77. doi: 10.1002/jgm.2698

Gong H, Liu M, Klomp J, Merrill BJ, Rehman J, Malik AB (2017) Method for dual viral vector mediated CRISPR-Cas9 gene disruption in primary human endothelial cells. Sci Rep 7:42127. doi: 10.1038/srep42127

Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D (2015) Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 26:443-451. doi: 10.1089/hum.2015.074

He ZY, Men K, Qin Z, Yang Y, Xu T, Wei YQ (2017) Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Sci China Life Sci 60:458-467. doi: 10.1007/s11427-017-9033-0

Hodgkins A, Farne A, Perera S, Grego, T, Parry-Smith DJ, Skarnes WC, Iyer V (2015) WGE: a CRISPR database for genome engineering. Bioinformatics 31:3078-3080. doi: 10.1093/bioinformatics/btv308

Hough SH, Kancleris K, Brody L, Humphryes-Kirilov N, Wolanski J, Dunaway K, Ajetunmobi A, Dillard V (2017) Guide picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments. BMC Bioinformatics 18:167. doi: 10.1186/s12859-017-1581-4

Kim E, Koo T, Park SW, Kim D, Kim K, Cho H-Y, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim J-S (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500. doi: 10.1038/ncomms14500

Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrisnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrisnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S. Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509:575-581. doi: 10.1038/nature13302

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016a) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495. doi: 10.1038/nature16526

Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016b) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34:869–874. doi: 10.1038/nbt.3620

Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276. doi: 10.1093/nar/gkw398

Lee CM, Cradick TJ, Bao G (2016) The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 24:645–654. doi: 10.1038/mt.2016.8

Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD (2017) Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol 241:136–146. doi: 10.1016/j.jbiotec.2016.11.011

Meissner TB, Mandal PK, Ferreira LM, Rossi DJ, Cowan CA (2014) Genome editing for human gene therapy. Methods Enzymol 546:273–295. doi: 10.1016/B978-0-12-801185-0.00013-1

Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ (2017) Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie - International Edition 56:1059–1063. doi: 10.1002/anie.201610209

Mout R, Ray M, Yesilbag Tonga G, Lee Y-W, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11:2452–2458. doi: 10.1021/acsnano.6b07600

Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24:636–644. doi: 10.1038/mt.2015.218

Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123. doi: 10.1093/bioinformatics/btu743

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal Structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949. doi: 10.1016/j.cell.2014.02.001

Park A, Hong P, Won ST, Thibault PA, Vigant F, Oguntuyo KY, Taft JD, Lee B (2016) Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev 3:16057. doi: 10.1038/mtm.2016.57

Pliatsika V, Rigoutsos I (2015) “Off-Spotter”: very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs. Biol Direct 10:4. doi: 10.1186/s13062-015-0035-z

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. doi: 10.1038/nature14299

Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344. doi: 10.1038/nbt.3481

Rothkamm K, Krüger I, Thompson LH, Löbrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715. doi: 10.1128/MCB.23.16.5706-5715.2003

Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2015) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84-88. doi: 10.1126/science.aad5227

Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 7:10548. doi: 10.1038/ncomms10548

Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berqqren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JCI (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149. doi: 10.1038/nature20565

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197. doi: 10.1038/nbt.3117

Tycko J, Myer VE, Hsu PD (2016) Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell 63:355–370. doi: 10.1016/j.molcel.2016.07.004

Wang L, Li F, Dang L, Liang C, Wang C, He B, Liu J, Li D, Wu X, Xu X, Lu A, Zhang G (2016). In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17:626. doi: 10.3390/ijms17050626

Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555. doi: 10.1038/nrg3763

Zhang J-P, Li X-L, Li G-H, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu Y-W, Xu J, Chun N, Yuan W, Cheng T, Zhang X-B (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18:35. doi: 10.1186/s13059-017-1164-8

Zhen S, Takahashi Y, Narita S, Yang Y-C, Li X (2017) Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget 8:9375–9387. doi: 10.18632/oncotarget.14072

Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS ONE 9:e108424. doi: 10.1371/journal.pone.0108424

Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen Z-Y, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80. doi: 10.1038/nbt.3081