DEKSTROSA MONOHIDRAT KUALITAS FARMASI DARI PATI Manihot ecsulenta, Metroxylon sagu, Zea mays, Oryza sativa, dan Triticum
Main Article Content
Abstract
Dekstrosa monohidrat kualitas farmasi, salah satu bahan baku yang digunakan sebagai active pharmaceutical ingredient (API) dan bahan tambahan, dapat dibuat dari bahan pati-patian. Terdapat lima jenis pati komersial lokal Indonesia yang berpotensi digunakan yakni pati tapioka (Manihot esculenta), pati sagu (Metroxylon sagu), pati jagung (Zea mays), pati beras (Oryza sativa), dan pati gandum (Triticum). Penelitian ini bertujuan membandingkan lima jenis pati tersebut sebagai bahan baku pembuatan dekstrosa monohidrat kualitas farmasi yang diharapkan mampu memenuhi standar persyaratan dari Farmakope Indonesia Edisi V dan United States Pharmacopeia (USP). Pati diubah menjadi dekstrosa monohidrat melalui hidrolisis likuifikasi, hidrolisis sakarifikasi, pemurnian karbon aktif dan filtrasi, pemurnian ion exchange, evaporasi, kristalisasi dan pengeringan. Metode High Performance Liquid Chromatogram (HPLC) dan Luff-Schoorl digunakan untuk analisis dextrose equivalent (DE). Hasil penelitian menunjukkan hanya tiga jenis pati yang menghasilkan dekstrosa monohidrat kualitas farmasi, yakni (DE) pati sagu (107,23% dan 100,77%), pati jagung (97,86% dan 96,19%), dan pati tapioka (85,18% dan 99,20%).
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Acevedo D, Nagy ZK (2014) Systematic classification of unseeded batch crystallization systems for achievable shape and size analysis. J Cryst Growth 394:97–105. doi: 10.1016/j.jcrysgro.2014.02.024
Badan Standarisasi Nasional (1995) Tepung jagung, SNI 01-3727-1995. Badan Standarisasi Nasional, Jakarta
Badan Standarisasi Nasional (1996) Tepung tapioka, SNI 01-2997-1996. Badan Standarisasi Nasional, Jakarta
Badan Standarisasi Nasional (2008) Tepung sagu, SNI 3729-2008. Badan Standarisasi Nasional, Jakarta
Badan Standarisasi Nasional (2009) Tepung beras, SNI 3549-2009. Badan Standarisasi Nasional, Jakarta
Badan Standarisasi Nasional (2009) Tepung terigu sebagai bahan makanan, SNI 3751-2009. Badan Standarisasi Nasional, Jakarta
Bandini S, Nataloni L (2015) Nanofiltration for dextrose recovery from crystallization mother liquors: A feasibility study. Sep Purif Technol 139:53–62. doi: 10.1016/j.seppur.2014.10.025
Berski W, Ziobro R, Witczak M, GambuÅ› H (2018) The retrogradation kinetics of starches of different botanivecal origin in the presence of glucose syrup. Int J Biol Macromol 114:1288–1294. doi: 10.1016/j.ijbiomac.2018.04.019
Bosma WB, Schnupf U, Willett JL, Momany FA (2009) Density functional study of the infrared spectrum of glucose and glucose monohydrates in the OH stretch region. J Mol Struct THEOCHEM 905:59–69. doi: 10.1016/j.theochem.2009.03.013
Chen K, Luo G, Lei Z, Zhang Z, Zhang S, Chen J (2018a) Chromatographic separation of glucose, xylose and arabinose from lignocellulosic hydrolysates using cation exchange resin. Sep Purif Technol 195:288–294. doi: 10.1016/j.seppur.2017.12.030
Chen M, Wu S, Xu S, Yu B, Shilbayeh M, Liu Y, Zhu X, Wang J, Gong J (2018b) Caking of crystals: Characterization, mechanisms and prevention. Powder Technol 337:51–67. doi: 10.1016/j.powtec.2017.04.052
Choubane S, Khelil O, Cheba BA (2015) Bacillus sp. R2 and Bacillus cereus immobilized amylases for glucose syrup production. Procedia Technol 19:972–979. doi: 10.1016/j.protcy.2015.02.139
El-Yafi AKEZ, El-Zein H (2014) Technical crystallization for application in pharmaceutical material engineering: Review article. Asian J Pharm Sci 10:283–291. doi: 10.1016/j.ajps.2015.03.003
Flood AE, Srisanga S (2012) An improved model of the seeded batch crystallization of glucose monohydrate from aqueous solutions. J Food Eng 109:209–217. doi: 10.1016/j.jfoodeng.2011.09.035
Frawley PJ, Mitchell NA, Ó’Ciardhá CT, Hutton KW (2012) The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions. Chem Eng Sci 75:183–197. doi: 10.1016/j.ces.2012.03.041
Hartmann M, Palzer S (2011) Caking of amorphous powdersꟷMaterial aspects, modelling and applications. Powder Technol 206:112–121. doi: 10.1016/j.powtec.2010.04.014
Jha SK, Karthika S, Radhakrishnan TK (2017) Modelling and control of crystallization process. Resour Technol 3:94–100. doi: 10.1016/j.reffit.2017.01.002
Johnson R, Padmaja G, Moorthy SN (2009) Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques. Innov Food Sci Emerg Technol 10:616–620. doi: 10.1016/j.ifset.2009.04.001
Kementerian Kesehatan (2014) Farmakope Indonesia Edisi V. Kementerian Kesehatan Republik Indonesia, Jakarta, hal 289–290
Langrish TAG, Wang E, Das D (2015) Solid-phase crystal growth kinetics of spray-dried glucose powders. Food Bioprod Process 93:58–68. doi: 10.1016/j.fbp.2013.11.003
Liu T, Huo Y, Ma CY, Wang XZ (2017) Sparsity-based image monitoring of crystal size distribution during crystallization. J Cryst Growth 469:160–167. doi: 10.1016/j.jcrysgro.2016.09.040
Markande A, Nezzal A, Fitzpatrick JJ, Aerts L (2009) Investigation of the crystallization kinetics of dextrose monohydrate using in situ particle size and supersaturation monitoring. Part Sci Technol 27:373–388. doi: 10.1080/02726350902994050
Markande A, Fitzpatrick J, Nezzal A, Aerts L, Redl A (2012a) Effect of initial dextrose concentration, seeding and cooling profile on the crystallization of dextrose monohydrate. Food Bioprod Process 90:406–412. doi: 10.1016/j.fbp.2011.11.010
Markande A, Nezzal A, Fitzpatrick J, Aerts L, Redl A (2012b) Influence of impurities on the crystallization of dextrose monohydrate. J Cryst Growth 353:145–151. doi: 10.1016/j.jcrysgro.2012.04.021
Markande A, Fitzpatrick J, Nezzal A, Aerts L, Redl A (2013) Application of in-line monitoring for aiding interpretation and control of dextrose monohydrate crystallization. J Food Eng 114:8–13. doi: 10.1016/j.jfoodeng.2012.07.029
Momany F, Schnupf U (2014) DFT optimization and DFT-MD studies of glucose, ten explicit water molecules enclosed by an implicit solvent, COSMO. Comput Theor Chem 1029:57–67. doi: 10.1016/j.comptc.2013.12.007
Mostafazadeh AK, Sarshar M, Javadian S, Zarefard MR, Amirifard Haghighi Z (2011) Separation of fructose and glucose from date syrup using resin chromatographic method: Experimental data and mathematical modeling. Sep Purif Technol 79:72–78. doi: 10.1016/j.seppur.2011.03.014
Peroni CV, Parisi M, Chianese A (2010) Hybrid modelling and self-learning system for dextrose crystallization process. Chem Eng Res Des 88:1653–1658. doi: 10.1016/j.cherd.2010.01.038
Ramos JET, Duarte TC, Rodrigues AKO, Silva IJ, Cavalcante CL, Azevedo DCS (2011) On the production of glucose and fructose syrups from cashew apple juice derivatives. J Food Eng 102:355–360. doi: 10.1016/j.jfoodeng.2010.09.013
Silva R do N, Quintino FP, Monteiro VN, Asquieri ER (2010) Production of glucose and fructose syrups from cassava (Manihot esculenta Crantz) starch using enzymes produced by microorganisms isolated from Brazilian Cerrado soil. Food Sci Technol 30:213–217. doi: 10.1590/s0101-20612010005000011
Trasi NS, Boerrigter SXM, Byrn SR, Carvajal TM (2011) Investigating the effect of dehydration conditions on the compactability of glucose. Int J Pharm 406:55–61. doi: 10.1016/j.ijpharm.2010.12.042
USP (2016) Second Supplement to USP 39 - NF 34. The United States Pharmacopeial Convention, Rockville (MD)
Widenski DJ, Abbas A, Romagnoli JA (2011) A model-based nucleation study of the combined effect of seed properties and cooling rate in cooling crystallization. Comput Chem Eng 35:2696–2705. doi: 10.1016/j.compchemeng.2010.11.002
Zafar U, Vivacqua V, Calvert G, Ghadiri M, Cleaver JAS (2017) A review of bulk powder caking. Powder Technol 313:389–401. doi: 10.1016/j.powtec.2017.02.024
Zheng ZP, Fan WH, Li H, Tang J (2014) Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. J Mol Spectrosc 296:9–13. doi: 10.1016/j.jms.2013.12.002