PENGARUH WAKTU FERMENTASI TERHADAP AKTIVITAS ANTIOKSIDAN DAN KADAR BETASIANIN MINUMAN FUNGSIONAL DARI BUAH NAGA (Hylocereus polyrhizus) DAN UMBI BIT (Beta vulgaris)

Main Article Content

Yati Maryati
Agustine Susilowati
Nina Artanti
Puspa DN Lotulung
Aspiyanto

Abstract

Kombucha merupakan minuman tradisional hasil olahan fermentasi teh yang kaya polifenol dengan konsorsium bakteri dan yeast (SCOBY). Buah naga dan umbi bit memiliki polifenol dan senyawa betasianin yang cukup tinggi sebagai antioksidan yang bermanfaat dalam menurunkan risiko penyakit kardiovaskular, penyakit kanker dan degenerasi alami tubuh terkait proses penuaan dini. Penelitian ini bertujuan untuk mengetahui perubahan aktivitas antioksidan dan kadar betasianin dari fermentasi buah naga maupun umbi bit sebagai minuman fungsional selama waktu fermentasi yang berbeda. Hasil penelitian menunjukkan bahwa adanya korelasi antara waktu fermentasi terhadap aktivitas antioksidan dalam kemampuannya menangkal radikal bebas, kemampuan mereduksi ion besi (FRAP), dan kadar betasianin yang dihasilkan. Semakin lama waktu fermentasi menyebabkan peningkatan penghambatan radikal bebas dan reduksi ion besi, namun menurunkan kadar betasianin. Nilai aktivitas penghambatan radikal bebas (DPPH) optimum diperoleh dari minuman fermentasi buah naga selama waktu fermentasi 12 hari dengan nilai penghambatan sebesar 80,76%, kemampuannya dalam mereduksi ion besi sebesar 197,94 µg asam askorbat mL–1, dan kadar betasianin sebesar 0,055 mg L

Article Details

How to Cite
Yati Maryati, Agustine Susilowati, Nina Artanti, Puspa DN Lotulung, & Aspiyanto. (2020). PENGARUH WAKTU FERMENTASI TERHADAP AKTIVITAS ANTIOKSIDAN DAN KADAR BETASIANIN MINUMAN FUNGSIONAL DARI BUAH NAGA (Hylocereus polyrhizus) DAN UMBI BIT (Beta vulgaris). Jurnal Bioteknologi Dan Biosains Indonesia, 7(1), 48–58. https://doi.org/10.29122/jbbi.v7i1.3732
Section
Articles

References

Akhter F, Hashim A, Khan MS, Ahmad S, Iqbal D, Srivastava AK, Siddiqui MH (2013) Antioxidant, α-amylase inhibitory and oxidative DNA damage protective property of Boerhaavia diffusa (Linn.) root. South Afr J Bot 88:265–272. doi: 10.1016/j.sajb.2013.06.024

Ali NF, El-Mohamedy RSR (2011) Eco-friendly and protective natural dye from red prickly pear (Opuntia Lasiacantha Pfeiffer) plant. J Saudi Chem Soc 15:257–261. doi: 10.1016/j.jscs.2010.10.001

Bhattacharya, S., & Sil, P. C. (2018). Role of plant-derived polyphenols in reducing oxidative stress-mediated diabetic complications. Reactive Oxygen Species, 5(13), 15-34. doi: 10.20455/ros.2018.811

Bhutto, A. A., Kalay, Åž., Sherazi, S. T. H., & Culha, M. (2018). Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta, 189, 174-181. doi: 10.1016/j.talanta.2018.06.080

Bursal E, Köksal E (2011) Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.). Food Res Int 44:2217–2221. doi: 10.1016/j.foodres.2010.11.001

Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7:2801–2822. doi: 10.3390/nu7042801

Eichhorn P, Knepper TP (2001) Electrospray ionization mass spectrometric studies on the amphoteric surfactant cocamidopropylbetaine. J mass Spectrom 36:677–684. doi: 10.1002/jms.170

Gengatharan A, Dykes GA, Choo WS (2015) Betalains: Natural plant pigments with potential application in functional foods. LWT - Food Sci Technol 64:645–649. doi: 10.1016/j.lwt.2015.06.052

Jayabalan R, Malbasa R V, Loncar ES, Vitas JS, Sathishkumar M (2014) A Review on kombucha tea — microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf 13:538–550. doi: 10.1111/1541-4337.12073

Jayabalan R, Malini K, Sathishkumar M, Swaminathan K, Yun S-E (2010) Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci Biotechnol 19:843–847. doi: 10.1007/s10068-010-0119-6

Kim H, Choi HK, Moon JY, Kim YS, Mosaddik A, Cho SK (2011) Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J Food Sci 76:C38–C45. doi: 10.1111/j.1750-3841.2010.01908.x

Kugler F, Stintzing FC, Carle R (2007) Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globosa L. and Bougainvillea sp. by HPLC–DAD–ESI–MSn. Anal Bioanal Chem 387:637–648. doi: 10.1007/s00216-006-0897-0

Mazidi SM, Rezaei K, Golmakani MT, Sharifan A, Rezazadeh S (2012) antioxidant Activity of essential oil from black zira (Bunium persicum Boiss.) obtained by microwave-assisted hydrodistillation. J Agric Sci Technol 14:1013-1022

Müller-Maatsch, J., Schweiggert, R. M., & Carle, R. (2016). Adulteration of anthocyanin-and betalain-based coloring foodstuffs with the textile dye ‘Reactive Red 195’and its detection by spectrophotometric, chromatic and HPLC-PDA-MS/MS analyses. Food control, 70, 333-338. doi: 10.1016/j.foodcont.2016.06.012

Nurikasari M, Puspitasari Y, Siwi RPY (2017) Characterization and analysis kombucha tea antioxidant activity based on long fermentation as a beverage functional. J Glob Res Public Health 2:90–96. doi: 10.5281/1117425

Ravichandran K, Saw NMMT, Mohdaly AAA, Gabr AMM, Kastell A, Riedel H, Cai Z, Knorr D, Smetanska I (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50:670–675. doi: 10.1016/j.foodres.2011.07.002

Rebecca OPS, Boyce AN, Chandran S (2010) Pigment identification and antioxidant properties of red dragon fruit (Hylocereus polyrhizus). Afr J Biotechnol 9:1450–1454. doi: 10.5897/AJB09.1603

Santos CCAA, Duarte WF, Carreiro SC, Schwan RF (2013) Inoculated fermentation of orange juice (Citrus sinensis L.) for production of a citric fruit spirit. J Inst Brew 119:280–287. doi: 10.1002/jib.89

Sawicki T, Wiczkowski W (2018) The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem 259:292–303. doi: 10.1016/j.foodchem.2018.03.143

Shade A (2011) The kombucha biofilm: a model system for microbial ecology. Final report on research conducted during the Microbial Diversity course, Marine Biological Laboratories, Woods Hole, Massachusetts USA

Shekade, D. P., Patil, P. D., Mote, G. V., & Sahoo, A. K. (2018). Potential Use of Dragon Fruit and Taro leaves as Functional Food: A Review. European Journal of Engineering Science and Technology, 1(1), 10-20. doi: 10.33422/EJEST.2018.07.77

Sulandi A, Sari R, Wahdaningsih S (2014) Aktivitas antioksidan ekstrak kloroform buah lakum (Cayratia trifolia) dengan metode DPPH (2,2-difenil-1-pikrilhidrazil). J Mhs Farm Fak Kedokteran UNTAN 1:1–11

Taira J, Tsuchida E, Katoh MC, Uehara M, Ogi T (2015) Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem 166:531–536. doi: 10.1016/j.foodchem.2014.05.102

Unal G, Akalın AS (2012) Antioxidant and angiotensin-converting enzyme inhibitory activity of yoghurt fortified with sodium calcium caseinate or whey protein concentrate. Dairy Sci Technol 92:627–639. doi: 10.1007/s13594-012-0082-5

Vijayalakshmi M, Ruckmani K (2016) Ferric reducing anti-oxidant power assay in plant extract. Bangladesh J Pharmacol 11:570–572. doi: 10.3329/bjp.v11i3.27663

Wong Y-M, Siow L-F (2015) Effect of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. J Food Sci Technol 52:3086–3092. doi: 10.1007/s13197-014-1362-2.

Wu L, Hsu H-W, Chen Y-C, Chiu C-C, Lin Y-I, Ho JA (2006) Antioxidant and antiproliferative activities of red pitaya. J Food Chem 95:319–327. doi: 10.1016/j.foodchem.2005.01.002