EKPRESI ANTIGEN Ag85B DARI Mycobacterium tuberculosis PADA GALUR SEL MAMALIA
Main Article Content
Abstract
Tuberkulosis (TB) terus menjadi salah satu masalah kesehatan dunia yang mempengaruhi jutaan manusia setiap tahun. Satu-satunya vaksin untuk TB yang ada adalah Bacillus Calmette-Guérin (BCG). Namun demikian, vaksin BCG ini memiliki kelemahan berupa terjadi efek preventif yang bervariasi dari satu individu terhadap individu lainnya. Oleh sebab itu diperlukan pengembangan vaksin TB yang dapat menggantikan vaksin BCG yang sudah ada. Penelitian ini bertujuan memperoleh protein rekombinan Ag85B yang memiliki karakteristik mirip dengan antigen Ag85B native dari Mycobacterium tuberculosis. Pada penelitian ini, telah dilakukan kegiatan pengklonaan dan ekspresi gen Ag85B pada galur sel mamalia. Pada tahap awal dilakukan pengklonaan gen sintesis Ag85B ke dalam plasmid pada sel mamalia pFLAG-CMV4 dan diekspresikan gennya pada sel CHO-K1. Hasil analisis Western blot menunjukan tersekresinya gen target berukuran 30 kDa pada media kultur dari sel mamalia yang ditransfeksi. Hasil dari penelitian ini menunjukkan potensi dari sistem ekpresi untuk protein rekombinan Ag85B pada galur sel mamalia sebagai kandidat vaksin TB yang baru.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Ahmad F, Zubair S, Gupta P, Gupta UD, Patel R, Owais M (2017) Evaluation of aggregated Ag85B antigen for its biophysical properties, immunogenicity, and vaccination potential in a murine model of tuberculosis infection. Front Immunol 8:1608. doi: 10.3389/fimmu.2017.01608
Centis R, D’Ambrosio L, Zumla A, Migliori GB (2017) Shifting from tuberculosis control to elimination: Where are we? What are the variables dan limitations? Is it achievable? Int J Infect Dis 56:30–33. doi: 10.1016/j.ijid.2016.11.416
Chapin HC, Rajendran V, Capasso A, Caplan MJ (2009) Detecting the surface localization dan cytoplasmic cleavage of membrane-bound proteins. Methods Cell Biol 94:223–239. doi: 10.1016/S0091-679X(08)94011-5
Dockrell HM, Smith SG (2017) What have we learnt about BCG vaccination in the last 20 years? Front Immunol 8:1134. doi: 10.3389/fimmu.2017.01134
Duarte R, Lönnroth K, Carvalho C, Lima F, Carvalho ACC, Muñoz-Torrico M, Centis R (2018) Tuberculosis, social determinants dan co-morbidities (including HIV). Pulmonology 24:115–119. doi: 10.1016/j.rppnen.2017.11.003
Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, dan future perspectives. Crit Rev Biotechnol 36:1110–1122. doi: 10.3109/07388551.2015.1084266
Ernst JD, Cornelius A, Bolz M (2019) Dynamics of Mycobacterium tuberculosis Ag85B revealed by a sensitive enzyme-linked immunosorbent assay. mBio 10:e00611–19. doi: 10.1128/mBio.00611-19
Favorov M, Ali M, Tursunbayeva A, Aitmagambetova I, Kilgore P, Ismailov S, Chorba T (2012) Comparative tuberculosis (TB) prevention effectiveness in children of bacillus calmette-guérin (BCG) vaccines from different sources, Kazakhstan. PLoS One 7:e32567. doi: 10.1371/journal.pone.0032567
Fihiruddin, Artama WT, Wibawa T, Mertaniasih NM (2019) Expression of immunoglobulin, granzyme-B and perforin against Ag85A and Ag85B proteins of Mycobacterium tuberculosis in Balb/c mice. Afr J Infect Dis 13:13–20. doi: 10.21010/ajid.v13i2.2
Gillis TP, Tullius MV, Horwitz MA (2014) rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B. Infect Immun 82:3900–3909. doi: 10.1128/IAI.01499-13
Gupta SK, Srivastava SK, Sharma A, Nalage VHH, Salvi D, Kushwaha H, Chitnis NB, Shukla P (2017) Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One 12:e0181455. doi: 10.1371/journal.pone.0181455
Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113. doi: 10.1016/0076-6879(91)04006-a
Huygen K (2014) The Immunodominant T-cell epitopes of the mycolyl-transferases of the antigen 85 complex of M. tuberculosis. Front Immunol 5:321. doi: 10.3389/fimmu.2014.00321
Kruh-Garcia NA, Murray M, Prucha JG, Dobos KM (2014) Antigen 85 variation across lineages of Mycobacterium tuberculosis-implications for vaccine and biomarker success. J Proteomics 97:141–150. doi: 10.1016/j.jprot.2013.07.005
Kwan CK, Ernst JD (2011) HIV and tuberculosis: A deadly human syndemic. Clin Microbiol Rev 24:351–376. doi: 10.1128/CMR.00042-10
Kwon B-E, Ahn J-H, Min S, Kim H, Seo J, Yeo S-G, Ko H-J (2018) Development of new preventive and therapeutic vaccines for tuberculosis. Immune Netw 18:e17. doi: 10.4110/in.2018.18.e17
Lee SH (2016) Tuberculosis infection and latent tuberculosis. Tuberc Respir Dis (Seoul) 79:201–206. doi: 10.4046/trd.2016.79.4.201
Luca S, Mihaescu T (2013) History of BCG vaccine. Maedica (Buchar) 8:53–58
Matsuo K, Yasutomi Y (2011) Mycobacterium bovis bacille calmette-guérin as a vaccine vector for global infectious disease control. Tuberc Res Treat 2011:574591. doi: 10.1155/2011/574591
Palmer MV, Thacker TC (2018) Use of the human vaccine, Mycobacterium bovis bacillus calmette guérin in deer. Front Vet Sci 5:244. doi: 10.3389/fvets.2018.00244
Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G (2012) Tuberculosis and HIV co-infection. PLoS Pathog 8:e1002464. doi: 10.1371/journal.ppat.1002464
Rustomjee R, Zumla A (2015) Delamanid expanded access novel treatment of drug resistant tuberculosis. Infect Drug Resist 8:359–366. doi: 10.2147/IDR.S62119
Sathkumara HD, Pai S, Aceves-Sánchez MdJ, Ketheesan N, Flores-Valdez MA, Kupz A (2019) BCG vaccination prevents reactivation of latent lymphatic murine tuberculosis independently of CD4+ T cells. Front Immunol 10:532. doi: 10.3389/fimmu.2019.00532
Seung KJ, Keshavjee S, Rich ML (2015) Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5:a017863. doi: 10.1101/cshperspect.a017863
Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496. doi: 10.1128/cmr.16.3.463-496.2003
Viljoen A, Richard M, Nguyen PC, Fourquet P, Camoin L, Paudal RR, Gnawali GR, Spilling CD, Cavalier J-F, Canaan S, Blaise M, Kremer L (2018) Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo. J Biol Chem 293:2755–2769. doi: 10.1074/jbc.RA117.000760
Zhang C, Song X, Zhao Y, Zhang H, Zhao S, Mao F, Bai B, Wu S, Shi C (2015) Mycobacterium tuberculosis secreted proteins as potential biomarkers for the diagnosis of active tuberculosis and latent tuberculosis infection. J Clin Lab Anal 29:375–382. doi: 10.1002/jcla.21782