PENGARUH METODE PROSES SINTESIS ANALOG KURKUMIN ASIMETRIS TERHADAP EFEK HEPATOPROTEKTIF MENCIT (Mus musculus L.)

Main Article Content

Imanuel Berly Delvis Kapelle
Wasmen Manalu

Abstract

Analog kurkumin asimetris (AKAS) dapat disintesis dari minyak kulit lawang. Produk AKAS dapat disintesis menggunakan metode konvensional dan microwave. Metode sintesis dapat mempengaruhi sifat fisik dan efek farmakologis. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh metode proses pada kemampuan hepatoprotektif AKAS dan untuk menentukan dosis efektif. Produk AKAS diuji in vivo pada mencit (Mus musculus L.) dengan kerusakan hati yang diinduksi CCl­4. Parameter yang diamati adalah biokimia enzim hati (AST dan ALT) dan analisis histologis. Hasil penelitian menunjukkan bahwa hewan yang diobati dengan produk AKAS-k memiliki kenaikan berat badan yang lebih baik, tingkat AST dan ALT yang lebih rendah, dan lebih sedikit tanda histologis kerusakan hati pada dosis AKAS yang lebih tinggi daripada yang terlihat pada hewan yang tidak diperlakukan atau diobati dengan produk AKAS-m. Dengan demikian, produk analog kurkumin asimetris yang diproses dengan metode konvensional lebih hepatoprotektif.

Article Details

How to Cite
Imanuel Berly Delvis Kapelle, & Wasmen Manalu. (2021). PENGARUH METODE PROSES SINTESIS ANALOG KURKUMIN ASIMETRIS TERHADAP EFEK HEPATOPROTEKTIF MENCIT (Mus musculus L.). Jurnal Bioteknologi Dan Biosains Indonesia, 7(2), 215–225. https://doi.org/10.29122/jbbi.v7i2.4206
Section
Articles

References

Aggarwal BB, Barton D, Wu SB (2010) Curcumin. Oncology Nurse Edition Vol 24 Issue 4. Cancer Network. https://www.cancernetwork.com/view/curcumin. Accessed on 26 January 2020

Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76: 1590-1611. doi: 10.1016/j.bcp.2008.08.008

Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV, Jamadar A, Dumhe-Klaire AC, Padhye S, Sarkar FH (2012) Inclusion complex of novel curcumin analogue CDF and ?-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res 29: 1775-1786. doi: 10.1007/s11095-012-0700-1

Irving GRB, Karmokar A, Berry DP, Brown K, Steward WP (2011) Curcumin: The potential for efficacy in gastrointestinal diseases. Best Pract Res Clin Gastroenterol 25: 519-534. doi: 10.1016/j.bpg.2011.09.005

Jin X, Zhang ZH, Sun E, Tan XB, Li SL, Cheng XD, You M, Jia XB (2013) Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies. Int J Nanomed 8: 641-652. doi: 10.2147/IJN.S38203

Johnson JJ, Mukhtar H (2007) Curcumin for chemoprevention of colon cancer. Cancer Lett 255: 170-181. doi: 10.1016/j.canlet.2007.03.005

Kapelle IBD, Irawadi TT, Rusli MS, Mangunwidjaja D, Mas’ud ZA (2016) Rekayasa proses sintesis piperonal kulit lawang (Cinnamomum culilawan Blume) sebagai prekursor obat kanker. J Penelit Hasil Hutan 34: 217-229. doi: 10.20886/jphh.2016.34.3.217-229

Kapelle IBD, Irawadi TT, Rusli MS, Mangunwidjaja D, Mas’ud ZA (2015a) Synthesis of new curcumin analogues from kulit lawang oils using the conventional method and microwave. Sci J Chem 3: 50-56. doi: 10.11648/j.sjc.20150303.13

Kapelle IBD, Irawadi TT, Rusli MS, Mangunwidjaja D, Mas’ud ZA (2015b) Synthesis of asymmetric curcumin analogues from cullilawan oil using conventional and microwave method. Procedia Chem 16: 480-488. doi: 10.1016/j.proche.2015.12.082

Kapelle IBD, Irawadi TT, Rusli MS, Mangunwidjaja D, Mas’ud ZA (2015c) The influence of synthesis methods against anti-cancer activity of curcumin analogous. Cancer Res J 3: 68-75. doi: 10.11648/j.crj.20150304.12

Kapelle IBD, Manalu W, Mainassy MC (2019) Influence of process methods on the hepatoprotective effect of curcumin analogs synthesized from culilawan oil in mice (Mus musculus L.) with CCl4 induced liver damage. Ohio J Sci 119: 28-37. doi: 10.18061/ojs.v119i2.6652

Khan RA, Khan MR, Ahmed M, Sahreen S, Shah NA, Shah MS, Bokhari J, Rashid U, Ahmad B, Jan S (2012) Hepatoprotection with a chloroform extract of Launaea procumbens against CCl4-induced injuries in rats. BMC Complement Altern Med 12: 114. doi: 10.1186/1472-6882-12-114

Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5: 4209-4232. doi: 10.3390/en5104209

Mehta A, Kaur G, Chintamaneni M (2012) Piperine and quercetin enhances antioxidant and hepatoprotective effect of curcumin in paracetamol induced oxidative stress. Int J Pharm 8: 101-107. doi: 10.3923/ijp.2012.101.107

Moorthi C, Kathiresan K (2013) Curcumin–piperine/curcumin–quercetin/curcumin –silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J Med Hypoth Ide 7: 15-20. doi: 10.1016/j.jmhi.2012.10.005

Qian Y, Zhong P, Liang D, Xu Z, Skibba M, Zeng C, Li X, Eie T, Wu L, Liang G (2015) A newly designed curcumin analog Y20 mitigates cardiac injury via anti-inflammatory and anti-oxidant actions in obese rats. PLoS One 10: e0120215. doi: 10.1371/journal.pone.0120215

Shang YJ, Jin XL, Shang XL, Tang JJ, Liu GY, Dai F, Qian YP, Fan GJ, Liu Q, Zhou B (2010) Antioxidant capacity of curcumin-directed analogues: Structure–activity relationship and influence of microenvironment. Food Chem 119: 1435-1442. doi: 10.1016/j.foodchem.2009.09.024

Tellez HM, Alquisira JP, Alonso CR, Cortes JGL, Toledano CA (2011) Comparative kinetic study and microwaves non-thermal effects on the formation of poly(amic acid) 4,4?-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4?-(hexafluoroisopropylidene) bis (p-phenyleneoxy) dianiline (BAPHF). Reaction activated by microwave, ultrasound and conventional heating. Int J Mol Sci 12: 6703-6721. doi: 10.3390/ijms12106703

Thomas SL, Zhao J, Li Z, Lou B, Du Y, Purcell J, Snyder JP, Khuri FR, Liotta D, Fu H (2010) Activation of the p38- pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy. Biochem Pharmacol 80: 1309-1316. doi: 10.1016/j.bcp.2010.06.048

Tori M (2015) Relative stability of cis- and trans-hydrindanones. Molecules 20: 1509-1518. doi: 10.3390/molecules20011509

Villegas AM, Catalan LE, Venegas IM, Garcia JV, Altamirano HC (2011) New catechol derivatives of safrole and their antiproliferative activity towards breast cancer cells. Molecules 16: 4632-4641. doi: 10.3390/molecules16064632

Yang CH, Yue J, Sims M, Pfeffer LM (2013) The curcumin analog EF24 targets NF-kB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PLoS One 8: e71130. doi: 10.1371/journal.pone.0071130

Ye MX, Li Y, Yin H, Zhang J (2012) Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci 13: 3959-3978. doi: 10.3390/ijms13033959

Zhang Q, Zhong Y, Yan LN, Sun X, Gong T, Zhang ZR (2011) Synthesis and preliminary evaluation of curcumin analogues as cytotoxic agents. Bioorg Med Chem Lett 21: 1010-1014. doi: 10.1016/j.bmcl.2010.12.020

Zhao C, Yang J, Wang Y, Liang D, Yang X, Li X, Wu J, Wu X, Yang S, Li X, Liang G (2010) Synthesis of mono-carbonyl analogues of curcumin and their effects on inhibition of cytokine release in LPS-stimulated RAW 264.7 macrophages. Bioorg Med Chem 18: 2388-2393. doi: 10.1016/j.bmc.2010.03.001