PELATIHAN FISIK SEDANG MENINGKATKAN KADAR VASCULAR ENDOTHELIAL GROWTH FACTOR DAN STROMAL CELL-DERIVED FACTOR-1 SERUM
Main Article Content
Abstract
Pelatihan fisik mempengaruhi berbagai sistem dalam tubuh yang berperan mempertahankan kebugaran fisik dan memperlambat proses penuaan. Penelitian menunjukkan bahwa kadar vascular endothelial growth factor (VEGF) dan stromal cell-derived factor-1 (SDF-1) menurun seiring dengan penuaan. Penelitian ini bertujuan membuktikan bahwa pelatihan fisik sedang meningkatkan kadar VEGF dan SDF-1 sebagai salah satu mekanisme penghambat proses penuaan. Penelitian ini menggunakan randomized pre-post test control group design dengan menggunakan 24 ekor tikus wistar (Rattus norvegicus) jantan sehat dengan umur 2,5 - 3 bulan, berat badan 180 -200 g yang dibagi dalam dua kelompok (n= 12 ekor). Kelompok kontrol tidak diberikan perlakuan atau sedentary lifestyle (P0) dan kelompok perlakuan diberi pelatihan fisik sedang selama 4 minggu (P1). Kadar VEGF dan SDF-1 diperiksa menggunakan ELISA. Hasil penelitian menunjukkan bahwa pelatihan fisik sedang meningkatkan kadar VEGF (43,88±6,24 menjadi 69,80 ± 10,04 pg mL-1; p<0,001) dan SDF-1 (1,82 ± 0,17 to 3,81±0,39 ng mL-1; p< 0,001). Hasil penelitian ini menunjukkan kemungkinan VEGF dan SDF-1 sebagai mediator efek yang memperlambat penuaan. Namun, perlu dilakukan penelitian lebih lanjut untuk mengidentifikasi korelasi antara peningkatan kadar VEGF dan SDF-1 dengan fenotip penuaan.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Ahluwalia A, Jones MK, Szabo S, Tarnawski AS (2014) Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival. J Physiol Pharmacol 65: 209-215
Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L (2017) Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget 8: 45008-45019. doi: 10.18632/oncotarget.16726
Barzegari A, Mirdar S, Ranayi M (2018) Modulation of vascular endothelial growth factor and annexin A2 in response to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone -induced inflammation via swimming training. Iran J Allergy, Asthma Immunol 17: 418-427. doi: 10.18502/ijaai.v17i5.300
Bogoslovsky T, Spatz M, Chaudhry A, Maric D, Luby M, Frank J, Warach S (2011) Stromal-derived factor-1? correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients. Stroke 42: 618-625. doi: 10.1161/STROKEAHA.110.596007
Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858-864. doi: 10.1038/nm1075
Chang E, Paterno J, Duscher D, Maan ZN, Chen JS, Januszyk M, Rodrigues M, Rennert RC, Bishop S, Whitmore AJ, Whittam AJ, Longaker MT, Gurtner GC (2015) Exercise induces stromal cell–derived factor-1?–mediated release of endothelial progenitor cells with increased vasculogenic function. Plast Reconstr Surg 135: 340e-350e. doi: 10.1097/PRS.0000000000000917
De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M (2004) SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104: 3472-3482. doi: 10.1182/blood-2003-12-4423
Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC (2004) Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol 96: 19-24. doi: 10.1152/japplphysiol.00748.2003
Hayes LD, Herbert P, Sculthorpe NF, Grace FM (2017) Exercise training improves free testosterone in lifelong sedentary aging men. Endocr Connect 6: 306-310. doi: 10.1530/EC-17-0082
Herrmann M, Verrier S, Alini M (2015) Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Front Bioeng Biotechnol 3: 79. doi: 10.3389/fbioe.2015.00079
Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC (2008) Exercise and circulating cortisol levels: The intensity threshold effect. J Endocrinol Invest 31: 587-591. doi: 10.1007/BF03345606
Ho TK, Shiwen X, Abraham D, Tsui J, Baker D (2012) Stromal-cell-derived factor-1 (SDF-1)/CXCL12 as potential target of therapeutic angiogenesis in critical leg ischaemia. Cardiol Res Pract 2012: 143209. doi: 10.1155/2012/143209
Hohman TJ, Bell SP, Jefferson AL, the Alzheimer’s Neuroimaging Initiative (2015) The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: Exploring interactions with biomarkers of Alzheimer disease. JAMA Neurol 72: 520-529. doi: 10.1001/jamaneurol.2014.4761
Izzicupo P, D’Amico MA, Di Blasio A, Napolitano G, Di Baldassarre A, Ghinassi B (2017) Nordic walking increases circulating VEGF more than traditional walking training in postmenopause. Climacteric 20: 533-539. doi: 10.1080/13697137.2017.1366979
Kartiko BH, Siswanto FM (2018) Overtraining elevates serum protease level, increases renal p16INK4? gene expression and induces apoptosis in rat kidney. Sport Sci Health 14: 331-337. doi: 10.1007/s11332-018-0433-6
Kraus RM, Stallings HW, Yeager RC, Gavin TP (2004) Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol 96: 1445-1450. doi: 10.1152/japplphysiol.01031.2003
Lenk K, Uhlemann M, Schuler G, Adams V (2011) Role of endothelial progenitor cells in the beneficial effects of physical exercise on atherosclerosis and coronary artery disease. J Appl Physiol 111: 321-328. doi: 10.1152/japplphysiol.01464.2010
Lindholm ME, Rundqvist H (2016) Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol 101: 28-32. doi: 10.1113/EP085318
Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, Luo X (2012) The Role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 7: e34608. doi: 10.1371/journal.pone.0034608
Luo L, Uehara H, Zhang X, Das SK, Olsen T, Holt D, Simonis JM, Jackman K, Singh N, Miya TR, Huang W, Ahmed F, Bastos-Carvalho A, Le YZ, Mamalis C, Chiodo VA, Hauswirth WW, Baffi J, Lacal PM, Orecchia A, Ferrara N, Gao G, Young-hee K, Fu Y, Owen L, Albuquerque R, Baehr W, Thomas K, Li DY, Chalam KV, Shibuya M, Grisanti S, Wilson DJ, Ambati J, Ambati BK (2013) Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. Elife 2: e00324. doi: 10.7554/eLife.00324
Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stølen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjørås M, Wisløff U, Storm-Mathisen J, Bergersen LH (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8: 15557. doi: 10.1038/ncomms15557
Nieman DC, Wentz LM (2019) The compelling link between physical activity and the body’s defense system. J Sport Heal Sci 8: 201-217. doi: 10.1016/j.jshs.2018.09.009
Nishiguchi MA, Spencer CA, Leung DH, Leung TH (2018) Aging suppresses skin-derived circulating SDF1 to promote full-thickness tissue regeneration. Cell Rep 24: 3383-3392.e5. doi: 10.1016/j.celrep.2018.08.054
Nyandra M, Kartiko BH, Arunngam P, Pangkahila A, Siswanto FM (2018) Overtraining induces oxidative stress-mediated renal damage in male Wistar rats. Transylvanian Rev 26: 7659-7666. Corpus ID: 81001135
Pangkahila EA, Adiputra N, Pangkahila W, Yasa IWPS (2016) Balanced physical exercise increase physical fitness, optimize endorphin levels, and decrease malondialdehyde levels. Bali Med J 5: 493-496. doi: 10.15562/bmj.v5i3.337
Ribeiro F, Ribeiro IP, Gonçalves AC, Alves AJ, Melo E, Fernandes R, Costa R, Sarmento-Ribeiro AB, Duarte JA, Carreira IM, Witkowski S, Oliveira J (2017) Effects of resistance exercise on endothelial progenitor cell mobilization in women. Sci Rep 7: 17880. doi: 10.1038/s41598-017-18156-6
Siswanto FM, Oguro A, Imaoka S (2017) Chlorogenic acid modulates hypoxia response of Hep3B cells. Person Med Universe 6: 12-16. doi: 10.1016/j.pmu.2017.03.001
Siswanto FM, Pangkahila A (2014) Pelatihan fisik seimbang meningkatkan aktivitas stem cell endogen untuk anti penuaan. Sport Fit J 2: 1-9
Siswanto FM, Pangkahila EA (2015) Pola hidup tidak teratur dan aktivitas fisik berlebih menurunkan kemampuan aktivitas seksual. Sport Fit J 3: 59-69
Tang J-M, Wang J-N, Zhang L, Zheng F, Yang J-Y, Kong X, Guo L-Y, Chen L, Huang Y-Z, Wan Y, Chen S-Y (2011) VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 91: 402-411. doi: 10.1093/cvr/cvr053
Tang K, Xia FC, Wagner PD, Breen EC (2010) Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 170: 16-22. doi: 10.1016/j.resp.2009.10.007
Tsai M-S, Kuo M-L, Chang C-C, Wu Y-T (2013) The effects of exercise training on levels of vascular endothelial growth factor in tumor-bearing mice. Cancer Biomark 13: 307-313. doi: 10.3233/CBM-130359
Viboolvorakul S, Patumraj S (2014) Exercise training could improve age-related changes in cerebral blood flow and capillary vascularity through the upregulation of VEGF and eNOS. Biomed Res Int 2014: 230791. doi: 10.1155/2014/230791
Vital TM, Stein AM, de Melo Coelho FG, Arantes FJ, Teodorov E, Santos-Galduróz RF (2014) Physical exercise and vascular endothelial growth factor (VEGF) in elderly: A systematic review. Arch Gerontol Geriatr 59: 234-239. doi: 10.1016/j.archger.2014.04.011
Volaklis KA, Tokmakidis SP, Halle M (2013) Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clin Res Cardiol 102: 249-257. doi: 10.1007/s00392-012-0517-2
Wagner PD (2011) The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochem Soc Trans 39: 1556-1559. doi: 10.1042/BST20110646
Widhiantara IG, Permatasari P, Rosiana IW, Sutirtayasa IWP, Siswanto FM (2020) Role of HIF-1, Siah-1 and SKN-1 in Inducing Adiposity for Caenorhabditis elegans under Hypoxic Conditions. Indones Biomed J 12: 51-56. doi: 10.18585/inabj.v12i1.1007
Zara S, Pokorski M, Cataldi A, Porzionato A, De Caro R, Antosiewicz J, Di Giulio C (2013) Development and aging are oxygen-dependent and correlate with VEGF and NOS along life span. Adv Exp Med Biol 223-228. doi: 10.1007/978-94-007-4549-0_28
Zenitalia, Pangkahila A, Pangkahila W, Siswanto FM (2018) Pelatihan fisik berlebih menurunkan jumlah hematopoietic stem cells (HSCs) dibandingkan pelatihan fisik seimbang pada tikus (Rattus norvegicus) Wistar jantan. J Biomedik 10: 16-23