POTENSI SENYAWA BIOAKTIF TANAMAN KELOR PENGHAMBAT INTERAKSI ANGIOTENSIN-CONVERTING ENZYME 2 PADA SINDROMA SARS-COV-2
Main Article Content
Abstract
Infeksi severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pada pandemi coronavirus disease 2019 (COVID-19) menjadi ancaman dunia kesehatan saat ini. Infeksi SARS-CoV-2 ditentukan oleh interaksi protein spike envelope S1 domain dengan reseptor angiotensin-converting enzyme 2 (ACE2) yang diekspresikan pada sel epitel saluran pernafasan terutama paru-paru. Mekanisme penghambatan ACE2 menjadi target penting dalam pengendalian COVID-19. Senyawa bioaktif tanaman obat, seperti flavonoid diketahui mampu mengganggu fungsi banyak makromolekul termasuk ACE (homolog dengan ACE2). Penelitian ini bertujuan mengeksplorasi kemampuan senyawa apiin, epicatechin, dan hesperetin dari Moringa oleifera dalam berinteraksi dengan sisi aktif ACE2 menggunakan metode penambatan molekul. Studi dilakukan dengan preparasi struktur molekul ligan dari PubChem database dan diolah dengan MOE 2008.10. Selanjutnya, data protein ACE2 (Protein Data Bank ID 1R4L) dianalisis sisi aktifnya untuk mengetahui lokasi penambatan ligan senyawa. Analisis skor docking dan ikatan hydrogen komplek ligan dan sisi aktif ACE2 menunjukkan bahwa afinitas flavonoid dapat diperingkatkan sebagai afinitas hesperetin > epicatechin > apiin > C19H23Cl2N3O4. Ketiga ligan senyawa yang terkandung dalam M. oleifera secara in silico mampu mengikat sisi aktif ACE2, sehingga berpotensi mencegah infeksi COVID-19. Skor PASS (prediction of activity spectra for substances) menunjukkan aktivitas biologis ligan yang menyerupai antiviral.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Aitipamula S, Vangala VR (2017) X-ray crystallography and its role in understanding the physicochemical properties of pharmaceutical cocrystals. J Indian Inst Sci 97: 227-243. doi: 10.1007/s41745-017-0026-4
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rolliger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 33: 1582?1614. doi: 10.1016/j.biotechadv.2015.08.001
Bahadur S, Long W, Shuaib M (2020) Human coronaviruses with emphasis on the COVID-19 outbreak. Virusdisease 31: 1-5. doi: 10.1007/s13337-020-00594-y
Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edition. WH Freeman, New York
Blaising J, Levy PL, Polyak SJ, Stanifer M, Boulant S, Pecheur EI (2013) Arbidol inhibits viral entry by interfering with clathrin-dependent trafficking. Antiviral Res 100: 215-219. doi: 10.1016/j.antiviral.2013.08.008
Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D (2020) Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 81: 318-356. doi: 10.1016/j.iinf.2020.04.017
de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJC (1997) Prediction of protein conformational freedom from distance constraints. Proteins 29: 240-251. doi: 10.1002/(SICI)1097-0134(199710)29:2<240::AID-PROT11>3.0.CO;2-O
Ferreira PG, Ferraz AC, Figueiredo JE Lima CF, Rodrigues VG, Taranto AG, Ferreira JMS, Brandão GC, Vieira–Filho SA, Duarte LP, de Brito Magalhães CL, de Magalhães JC (2018) Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Arch Virol 163: 1567?1576. doi:10.1007/s00705-018-3774-1
Feustel S, Ayón-Pérez F, Sandoval-Rodriguez A, Rodriguez-Echevarria R, Contreras-Salinas H, Armendariz-Borunda J, Sanchez-Orozco LV (2017) Protective effects of Moringa oleifera on HBV genotypes C and H transiently transfected Huh7 cells. J Immunol Res 2017: 6063850. doi :10.1155/2017/6063850
Heller L, Mota CR, Greco DB (2020) COVID-19 faecal-oral transmission: Are we asking the right questions? Sci Total Environ 729: 138919. doi: 10.1016/j.scitotenv.2020.138919
Huang W, Ravikumar KM, Parisien M, Yang S (2016) Theoretical modeling of multiprotein complexes by iSPOT: Integration of small-angle X-ray scattering, hydroxyl radical footprinting, and computational docking. J Struct Biol 196: 340-349. doi: 10.1016/j/jsb.2016.08.001
Imamsari M, Koentjoro MP, Nurhayati AP Isdiantoni, Prasetyo EN (2018) In vivo preliminary examination of Moringa oleifera leaves extract as antiaging candidate in Swiss webster male mice (Mus musculus). Int J Pharm Sci Res 9: 3638-3646. doi: 10.13040/ IJPSR.0975-8232.9(9).3638-46
Jia H (2016) Pulmonary angiotensin–converting enzyme 2 (ACE2) and inflammatory lung disease. Shock 46: 239-248. doi: 10.1097/SHK.0000000000000633
Kementerian Kesehatan (2020) Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-19). Revisi ke-3. Direktorat Jenderal Pencegahan dan Pengendalian Penyakit, Kementerian Kesehatan RI, Jakarta
Khan H, Jaiswal V, Kulshreshtha S, Khan A (2019) Potential angiotensin converting enzyme inhibitors from Moringa oleifera. Recent Pat Biotechnol 13: 239-248. doi: 10.2174/1872208313666190211114229
Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16: 747-748. doi: 10.1093/bioinformatics/16.8.747
Laksmiani NPL, Larasanty LPF, Santika AGGJ, Prayoga PAA, Dewi AAIK, Dewi NPA (2020) Active compounds activity from medicinal plants against SARS-CoV-2 using in silico assay. Biomed Pharmacol J 13: 873-881. doi: 10.13005/bpj/1953
Lin YT, Wu YH, Tseng CK, Lin CK, Chen WC, Hsu YC, Lee JC (2013) Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS One 8: e54466. doi: /10.1371/journal.pone.0054466
Lin H, Zhu H, Tan J, Wang H, Wang Z, Li P, Zhao C, Liu J (2019) Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules 24: 942. doi: 10.3390/molecules24050942
Lisi L, Lacal PM, Barbaccia ML, Graziani G (2020) Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 180: 114169. doi: 10.1016/j.bcp.2020.114169
Mourad JJ, Levy BI (2020) Interaction between RAAS inhibitors and ACE2 in the context of COVID-19. Nat Rev Cardiol 17: 313. doi: 10.1038/s41569-020-0368-x
Mukund V, Behera SK, Alam A, Nagaraju GP (2019) Molecular docking analysis of nuclear factor-?B and genistein interaction on the context of breast cancer. Bioinformation 15: 11-17. doi: 10.6026/97320630015011
Ogbole OO, Akinleye TE, Segun PA, Faleye TC, Adeniji AJ (2018) In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. Virol J 15: 110. doi: 10.1186/s12985-018-1022-7
Oo A, Hassandarvish P, Chin SP, Lee VS, Abu Bakar S, Zandi K (2016) In silico study on anti-Chikungunya virus activity of hesperetin. Peer J 4: e2602. doi: 10.7717/peerj.2602
Parikh HI, Kellogg GE (2014) Intuitive, but not simple: Including explicit water molecules in protein-protein docking simulations improves model quality. Proteins 82: 916-932. doi: 10.1002/prot.24466
Rahman N, Muhammad I, Gul-E-Nayab HK, Aschner M, Filosa R, Daglia M (2019) Molecular docking of isolated alkaloids for possible ?-glucosidase inhibition. Biomolecules 9: 544. doi: 10.3390/biom9100544
Riastiwi I, Damayanto IPGP, Ridwan R, Handayani T, Leksonowati A (2018) Moringa oleifera distribution in Java and Lesser Sunda islands attributed with annual rainfall. Biosaintifika 10: 613-621. doi: 10.15294/biosaintifika.v10i3.16115
Saha P, Banerjee AK, Tripathi PP, Srivastava AK, Ray U (2020) A virus that has gone viral: Amino acid mutation in S protein of Indian isolate of coronavirus COVID-19 might impact receptor binding, and thus, infectivity. Biosci Rep 40: BSR20201312. doi: 10.1042/bsr20201312
Schrezenmeier E, Dorner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: Implication for rheumatology. Nat Rev Rheumatol 16: 155-156. doi: 10.1038/s41584-020-0372-x
Sharifi N, Souri E, Ziai AS, Amin G, Amanlou M (2013) Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. Daru 21: 74. doi: 10.1186/2008-2231-21-74
Sliwoski G, Kothiwale S, Meiler J, Lowe Jr EW (2013) Computational methods in drug discovery. Pharmacol Rev 66: 334?395. doi: 10.1124/pr.112.007336
Su L, Ma X, Yu H, Zhang Z, Bian P, Han Y, Sun J, Liu Y, Yang C, Geng J, Zhang Z, Gai Z (2020a) The different clinical characteristics of corona virus disease cases between children and their families in China – the character of children with COVID-19. Emerg Microbes Infect 9: 707-713. doi: 10.1080/22221751.2020.1744483
Su J, Shen X, Ni Q, Zhao H, Cai J, Zhu B, Wu W, Lang G, Xu K, Sheng J (2020b) Infection of severe acute respiratory syndrome coronavirus 2 in a patient with AIDS. AIDS 34: 1575–1576. doi: 10.1097/QAD.0000000000002553
Sun J, Chen YT, Fan XD, Wang XY, Han QY, Liu ZW (2020) Advances in the use of chloroquine and hydroxychloroquine for the treatment of COVID-19. Postgrad Med 132: 604-613. doi: 10.1080/00325481.2020.1778982
Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW (2004) ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 279: 17996-18007. doi: 10.1074/jbc.M311191200
Vergara-Jimenez M, Almatrafi MM, Fernandez ML (2017) Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants (Basel) 6: 91. doi: 10.3390/antiox6040091
Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8: 1555-1572. doi: 10.2174/156802608786786624
Wang HD, Du GH, Liu A (2009) Evaluation for inhibitory effects of natural flavonoids on neuraminidases. Chinese J New Drugs 15: 1435-1439
WHO (2020) Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). World Health Organization, Geneva Switzerland
Wiese O, Zemlin AE, Pillay TS (2020) Molecules in pathogenesis: Angiotensin converting enzyme 2 (ACE2). J Clin Pathol 2020: 1-6. doi:10.1136/jclinpath-2020-206954
Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30: 343-355. doi: 10.1038/s41422-020-0305-x
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X (2020) Systmetic comparison of two animal-to-human transmitted human coronavirusses: SARS-CoV-2 and SARS-CoV. Viruses 12: 244. doi: 10.3390/v12020244
Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: Promising natural compounds against viral infections. Arch Virol 162: 2539?2551. doi: 10.1007/s00705-017-3417-y
Zheng YY, Ma YT, Zhang JY, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17: 259-260. doi: 10.1038/ s41569-020-0360-5