EVALUATING THE LONG-TERM STORAGE TIME VIABILITY AND SIZE DYNAMICS OF BACILLUS SP. BIOENCAPSULATION IN SODIUM ALGINATE MATRIX
Main Article Content
Abstract
The use of biological agents such as Bacillus sp. bacteria has begun to be widely used by farmers as a new form of control. Bacillus sp. needs to require special methods in its application because it has certain living conditions, and Bacillus sp. is vulnerable to environmental pressures. Bioencapsulated formulation in the form of granules is considered effective as a form of bacterial application in soil because it is able to protect Bacillus sp. and maintain survival. This study aims to determine the best concentration of sodium alginate in maintaining the viability of Bacillus sp. at the in vitro stage and to see changes in the size of the beads. The beads were made using extrusion method by combining Bacillus sp. suspension and sodium alginate suspension at 1%, 1.5%, and 2% concentration. The concentration of sodium alginate was not a major factor in changes in bead size and viability test results experienced significant changes in each observation. 1.5% and 2% concentrations can reach the highest viability value of 3x106 CFU/mL and decreased during 1 month of observation. Changes in bead size and viability were caused by the alginase enzyme produced by Bacillus sp.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abidin Z, LQ A, AL A (2015) Pengaruh bak-teri Bacillus spp. dan Pseudomonas sp. terhadap pertumbuhan cendawan patogen S. rolfsii Sacc. penyebab penyakit rebah semai pada tanaman kedelai. J HPT 3:1–10
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R (2022) Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sus-tainable Future. Molecules 27:3375. https://doi.org/10.3390/molecules27113375
Berninger T, Mitter B, Preininger C (2016) The smaller, the better? The size ef-fect of alginate beads carrying plant growth-promoting bacteria for seed coating. J Microencapsul 33:127–136. https://doi.org/10.3109/02652048.2015.1134690
Bevilacqua A, Campaniello D, Speranza B, Racioppo A, Altieri C, Sinigaglia M, Corbo MR (2020) Microencapsulation of Saccharomyces cerevisiae into Al-ginate Beads: A Focus on Functional Properties of Released Cells. Foods 9:1051. https://doi.org/10.3390/foods9081051
Chi Y, Wang D, Jiang M, Chu S, Wang B, Zhi Y, Zhou P, Zhang D (2020) Micro-encapsulation of Bacillus megaterium NCT-2 and its effect on remediation of secondary salinization soil. J Micro-encapsul 37:134–143. https://doi.org/10.1080/02652048.2019.1705409
Fakhruddin DK (2020) Viabilitas Bacillus sp. Sebagai Agen Antagonis Patogen TanamanDalam Formulasi Berbahan Dasar Tepung. Undergraduate Thesis. Universitas Jember
Fanucci D, Seese J (1991) Multi-faceted use of calcium alginates. A painless, cost-effective alternative for wound care management. Ostomy Wound Manage 37:16–22
Farhat MB, Taktek S, Chouayekh H (2014) Encapsulation in alginate enhanced the plant growth promoting activities of two phosphate solubilizing bacteria isolated from the phosphate mine of Gafsa. Net J Agric Sci 2:131–139
Hanif RA (2016) Pertumbuhan Bacillus sub-tilis Pada Media Perbanyakan Cair dan Daya Antagonisnya Terhadap Fusarium oxysporum F.Sp. Cubense. Undergraduate Thesis. Universitas Jember
Kalalo T, Miatmoko A, Tanojo H, Erawati T, Hariyadi DM, Rosita N (2022) Effect of Sodium Alginate Concentration on Characteristics, Stability and Drug Re-lease of Inhalation Quercetin Micro-spheres. J Farm dan Ilmu Kefarma-sian Indonesia 9:107–114. https://doi.org/10.20473/jfiki.v9i22022.107-114
Khimmakthong U, Khumpouk P, Saichana-phan N, Intarasin Y, Tirawanichakul K (2020) The Efficiency of Microencap-sulation with Alginate, Gelatin, and Chitosan on the Survival of Bacillus subtilis. Chiang Mai Univ J Nat Sci 19:684–701
Kim I-Y, Pusey PL, Zhao Y, Korban SS, Choi H, Kim KK (2012) Controlled re-lease of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J Control Release 161:109–115
Kim, Lee C-G, Lee EY (2011) Alginate ly-ase: Structure, property, and applica-tion. Biotechnol Bioprocess Eng 16:843–851. https://doi.org/10.1007/s12257-011-0352-8
Li ZQ, Hou LD, Li Z, Zheng W, Li L (2013) Study on Shape Optimization of Cal-cium–Alginate Beads. Adv Mater Res 648:125–130. https://doi.org/10.4028/www.scientific.net/AMR.648.125
Mishra M (2016) Handbook of Encapsula-tion and Controlled Release. CRC Press
Potdar SV, Shazin M, Kannan G (2019) A sustainable energy source from mi-crobes using microbial fuel cells. J Phys Conf Ser 1276:012077. https://doi.org/10.1088/1742-6596/1276/1/012077
Pringginies D (2020) Exploration of Sea Cucumber Intestinal Symbiont Mi-crobe As Probiotic Microbe Candidate In Healthcare Products. JFMR-J Fish Mar Res 4:27–34. https://doi.org/10.21776/ub.jfmr.2020.004.01.4
Priyani N, Pratiwi D, Suryanto D (2018) The potency of local bacterial isolates en-capsulated within sodium alginate in carbofuran degradation. In: IOP Con-ference Series: Earth and Environ-mental Science. IOP Publishing, p 012012
Ratnasari N, Kusumawati N, Kuswardani I (2014) Pengaruh Konsentrasi Natrium Alginat Sebagai Penjerat Sel Lacto-bacillus acidophilus FNCC 0051 Dan Lama Penyimpanan Terhadap Jumlah Sel Yang Terlepas dan Karakter Car-rier. J Teknol Pangan Dan Gizi 13:81–86
Rojas-Padilla J, de-Bashan LE, Parra-Cota FI, Rocha-Estrada J, de los Santos-Villalobos S (2022) Microencapsula-tion of Bacillus Strains for Improving Wheat (Triticum turgidum Subsp. du-rum) Growth and Development. Plants 11:2920. https://doi.org/10.3390/plants11212920
Saberi-Rise R, Moradi-Pour M (2020) The effect of Bacillus subtilis Vru1 encap-sulated in alginate – bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int J Biol Macromol 152:1089–1097. https://doi.org/10.1016/j.ijbiomac.2019.10.197
Saputra R, Arwiyanto T, Wibowo A (2015) Uji Aktivitas Antagonistik Beberapa Isolat Bacillus spp. Terhadap Penyakit Layu Bakteri (Ralstonia solanacea-rum) pada Beberapa Varietas Tomat dan Identifikasinya. Sem Nas Masy Biodiv Indon 1:1116–1122
Soesanto L (2017) Pengantar Pengendalian Hayati Penyakit Tanaman. Rajawali Press, Jakarta
Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla AM, Thakar PM (2013) Development of Microencapsu-lation Delivery System for Long-Term Preservation of Probiotics as Biother-apeutics Agent. Biomed Res Int Vol-ume 201:1–20
Souza-Alonso P, Rocha M, Rocha I, Ma Y, Freitas H, Oliveira RS (2021) Encap-sulation of Pseudomonas libanensis in alginate beads to sustain bacterial viability and inoculation of Vigna un-guiculata under drought stress. 3 Bio-tech 11:293. https://doi.org/10.1007/s13205-021-02818-4
Steiner UK (2021) Senescence in Bacteria and Its Underlying Mechanisms. Front Cell Dev Biol 9:668915. https://doi.org/10.3389/fcell.2021.668915
Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258
Subaryono S, Ardilasari Y, Peranginangin R, Zakaria FR, Suhartono MT (2016) Alginate lyase from Indonesian Bacil-lus megaterium S245 shows activities toward polymannuronate and polyguluronate. Squalen Bull Mar Fish Postharvest Biotechnol 11:45–52
Subaryono S, Peranginangin R, Suhartono MT, Zakaria FR (2015) Isolasi dan Identifikasi Bakteri Penghasil Alginat Lyase dari Rumput Laut Sargassum crassifolium. J Pascapanen Dan Bio-teknol Kelaut Dan Perikan 10:1–9. https://doi.org/10.15578/jpbkp.v10i1.239
Sutarti GAK, Wahab A (2010) Isolasi dan Uji Kemampuan Rizobakteri Indige-nous sebagai Agensia Pengendali Hayati Penyakit pada Tanaman Ca-bai. J Hortik 20:86–95
Szczech M, Maciorowski R (2016) Microen-capsulation Technique with Organic Additives for Biocontrol Agents. J Hor-tic Res 24:111–122
Tavafi H, Abdi- Ali AA, Ghadam P, Gharavi S (2017) Screening of Alginate Lyase-Producing Bacteria and Optimization of Media Compositions for Extracellu-lar Alginate Lyase Production. Iran Biomed J 21:48–56. https://doi.org/10.6091/.21.1.48
Trivedi P, Pandey A (2008) Recovery of plant growth-promoting rhizobacteria from sodium alginate beads after 3 years following storage at 4 degrees C. J Ind Microbiol Biotechnol 35:205–209. https://doi.org/10.1007/s10295-007-0284-7
Tu L, He Y, Yang H, Wu Z, Yi L (2015) Preparation and characterization of alginate–gelatin microencapsulated Bacillus subtilis SL-13 by emulsifica-tion/internal gelation. J Biomater Sci Polym Ed 26:735–749
Uyen NTT, Hamid ZAA, Tram NXT, Ahmad N (2020) Fabrication of alginate mi-crospheres for drug delivery: A re-view. Int J Biol Macromol 153:1035–1046
Yunizal (2004) Teknologi Pengolahan Algi-nat. Pusat Riset Pengolahan Produk dan Sosial Ekonomi Kelautan dan Perikanan, Jakarta