UTILIZATION OF PINEAPPLE PROCESSING LIQUID WASTE IN BIODEGRADATION OF DISPOSABLE FACE MASK BY BACTERIA FROM LAMPUNG BAY

Main Article Content

Deviany Deviany
Nawrah Meisyah Muthi'ah Zhofiroh
Yane Fita Febrina
Reggina Aulia Yusuf
Feerzet Achmad
Reni Yuniarti
Khaerunissa Anbar Istiadi

Abstract

The designation of COVID-19 as a global pandemic led to an increased use of single-use face masks, which result in waste that is difficult to degrade and has the potential to release microplastic fibers into the environment. This study aims to examine the im-pact of adding pineapple peel liquid waste (LCN) as a growth medium for the biodeg-radation of single-use face masks by bacterial isolates obtained from the waters of the Lampung Bay. The study investigates how LCN affects the efficiency of mask degra-dation by microorganisms, as well as how the ratio of LCN mixed with other growth media, such as Nutrient Broth (NB), influences the degradation process. The biodeg-radation process was carried out using a biostimulation technique, where bacterial iso-lates were incubated in media containing LCN at a 1:1 ratio. The degradation process lasted for 15 days, with the results being analyzed using gravimetry and Fourier-Transform Infrared Spectroscopy (FTIR). Gravimetric results showed a greater weight reduction in treated masks compared to the control masks. FTIR analysis also indicat-ed changes in the intensity of functional groups in the degraded layers of the masks, as well as the emergence of C≡C functional groups in the second and third layers. This study demonstrates that the addition of LCN can accelerate the biodegradation of sin-gle-use face masks, offering a new approach for managing mask waste.

Article Details

How to Cite
Deviany, D., Zhofiroh, N. M. M., Febrina, Y. F., Yusuf, R. A., Achmad, F., Yuniarti, R., & Istiadi, K. A. (2024). UTILIZATION OF PINEAPPLE PROCESSING LIQUID WASTE IN BIODEGRADATION OF DISPOSABLE FACE MASK BY BACTERIA FROM LAMPUNG BAY. Jurnal Bioteknologi Dan Biosains Indonesia, 11(2), 334–343. https://doi.org/10.11594/jbbi.11.2.8192
Section
Articles

References

Andriani, D. et al. (2022) ‘Polypropylene film and beads biodegradation by Lysini-bacillus macroides isolated from coastal area of Muara Angke in Jakar-ta-Indonesia’, IOP Conference Series: Earth and Environmental Science, 1017(1). Available at: https://doi.org/10.1088/1755-1315/1017/1/012019

Atanasova, N. et al. (2021) ‘Plastic degrada-tion by extremophilic bacteria’, Inter-national Journal of Molecular Scienc-es, 22(11), pp. 1–19. Available at: https://doi.org/10.3390/ijms22115610

Auta, H.S. et al. (2018) ‘Growth Kinetics and Biodeterioration of Polypropylene Microplastics by Bacillus sp . and Rhodococcus sp . Isolated from Man-grove Sediment’, Marine Pollution Bulletin, 127(April 2017), pp. 15–21. Available at: https://doi.org/10.1016/j.marpolbul.2017.11.036

Bhattacharjee, S. et al. (2020) ‘Last-resort strategies during mask shortages: Op-timal design features of cloth masks and decontamination of disposable masks during the COVID-19 pandem-ic’, BMJ Open Respiratory Research, 7(1), pp. 1–10. Available at: https://doi.org/10.1136/bmjresp-2020-000698

Cai, Z. et al. (2023) ‘Biological Degradation of Plastics and Microplastics : A Re-cent Perspective on Associated Mechanisms and Influencing Factors’, Microorganisms, 11(1661), pp. 1–17. Available at: https://doi.org/https://doi.org/10.3390/microorganisms11071661

Castañeda, R., Mar, L., Garc, C., & Reyes, C. (2024). Microbial Consortia in the Remediation of Single-Use Waste : The Case of Face Masks. 2070–2084.

Christita, M. et al. (2018) ‘Identifikasi Bakteri pada Air dari Lahan Bekas Tambang Nikel di Halmahera Timur’, Jurnal Wasian, 5(1), pp. 35–42.

Deviany, D. et al. (2023) ‘Potensi Mikroor-ganisme Indigen Perairan Teluk Lam-pung sebagai Pendegradasi Masker Sekali Pakai (Disposable Face Mask)’, Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengem-bangan Teknologi Kimia untuk Pen-golahan Sumber Daya Alam Indone-sia, pp. 1–7.

Dharmaraj, S., Ashokkumar, V. and Pandi-yan, R. (2021) ‘Pyrolysis: An effective technique for degradation of COVID-19 medical wastes’, Chemosphere, 275, pp. 1–20. Available at: https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130092.

Gahleitner, M. and Paulik, C. (2017) ‘Poly-propylene and Other Polyolefins’, in Brydson’s Plastics Materials: Eighth Edition. Elsevier Ltd, pp. 279–309. Available at: https://doi.org/10.1016/B978-0-323-35824-8.00011-6.

Jeon, J. et al. (2021) ‘Biodegradation of Polyethylene and Polypropylene by Lysinibacillus Species JJY0216 Iso-lated from Soil Grove’, Polymer Deg-radation and Stability, 191, pp. 1–8. Available at: https://doi.org/10.1016/j.polymdegradstab.2021.109662.

Kavitha, R., & Bhuvaneswari, V. (2021). Assessment of polyethylene degrada-tion by biosurfactant producing lig-ninolytic bacterium. Biodegradation, 32(5), 531–549. https://doi.org/10.1007/s10532-021-09949-8

Khoironi, A. et al. (2020) ‘Evaluation of pol-ypropylene plastic degradation and microplastic identi fi cation in sedi-ments at Tambak Lorok coastal area , Semarang , Indonesia’, Marine Pollu-tion Bulletin, 151(October 2019), p. 110868. Available at: https://doi.org/10.1016/j.marpolbul.2019.110868.

Kim C et al. (2018) ‘Influence of PH and Temperature on Growth Characteris-tics of Leading Foodborne Pathogens in a Laboratory Medium and Select Food Beverages’, Austin Publishing Group, 3(1), pp. 1–8. Available at: www.austinpublishinggroup.com.

Kochan, K. et al. (2020) ‘Vibrational spec-troscopy as a sensitive probe for the chemistry of intra-phase bacterial growth’, Sensors (Switzerland), 20(12), pp. 1–13. Available at: https://doi.org/10.3390/s20123452.

merckmilipore (2022) Lembar Data Kesela-matan, merckmilipore.com. Available at: https://www.merckmillipore.com/ID/id/product/msds/MDA_CHEM-105443?ReferrerURL=https%3A%2F%2Fwww.google.com%2F (Ac-cessed: 5 July 2024).

Michael L. Shuler and Kargi, F. (2022) Bio-process engineering: Basic concepts, Prentice Hall PTR. Available at: https://doi.org/10.1016/0168-3659(92)90106-2.

Miljaković, D., Marinković, J. and Balešević-Tubić, S. (2020) ‘The Significance of Bacillus spp. In Disease Suppression

and Growth Promotion of Field and Vegetable Crops’, Microorganisms, 8(7), pp. 1–19. Available at: https://doi.org/10.3390/microorganisms8071037.

Mohan, A.J. et al. (2016) ‘Microbial assisted High Impact Polystyrene ( HIPS ) deg-radation’, BIORESOURCE TECH-NOLOGY [Preprint]. Available at: https://doi.org/10.1016/j.biortech.2016.03.021.

Morgana, S., Casentini, B. and Amalfitano, S. (2021) ‘Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19’, Journal of Hazardous Materials, 419(April), p. 126507. Available at: https://doi.org/10.1016/j.jhazmat.2021.126507.

Oliveira, J. et al. (2022) ‘Marine-Derived Ac-tinomycetes: Biodegradation of Plas-tics and Formation of PHA Bioplas-tics—A Circular Bioeconomy Ap-proach’, Marine Drugs, 20(12). Avail-able at: https://doi.org/10.3390/md20120760.

Phelps Bondaroff, T. and Cooke, S. (2020) ‘Masks on the Beach: The impact of COVID-19 on marine plastic pollution’, OceansAsia, pp. 1–79. Available at: https://oceansasia.org/covid-19-facemasks/#861/1/.

Prata, J.C. et al. (2021) ‘Disposable Over Reusable Face Masks: Public Safety Or Environmental Disaster?’, Envi-ronments - MDPI, 8(4), pp. 1–10. Available at: https://doi.org/10.3390/environments8040031.

Purwaningsih, D. and Wulandari, D. (2021) ‘Uji Aktivitas Antibakteri Hasil Fer-mentasi Bakteri Endofit Umbi Talas (Colocasia esculenta L) terhadap Bak-teri Pseudomonas aeruginosa’, Jurnal Sains dan Kesehatan, 3(5), pp. 750–759. Available at: https://doi.org/10.25026/jsk.v3i5.622.

Sheldon, J.K., King, R.B. and Long, G.M. (2023) Practical Environmental Bio-remediation, Practical Environmental Bioremediation. Available at: https://doi.org/10.1201/9781003421269.

Sutanto, A. and Suarsini, E. (2016) Nata De Pina. Malang: UMM Press.

Walter, A. and Mayer, C. (2019) ‘Pepti-doglycan Structure, Biosynthesis, and Dynamics During Bacterial Growth’, in Extracellular Sugar-Based Biopoly-mers Matrices, pp. 237–299. Available at: https://doi.org/10.1007/978-3-030-12919-4.

Wang, X. et al. (2019) ‘Growth strategy of microbes on mixed carbon sources’, Nature Communications, 10(1), pp. 1–7. Available at: https://doi.org/10.1038/s41467-019-09261-3.

Wu, X., Spencer, S., Gushgari-Doyle, S., Yee, M. O., Voriskova, J., Li, Y., Alm, E. J., & Chakraborty, R. (2020). Cul-turing of “Unculturable” Subsurface Microbes: Natural Organic Carbon Source Fuels the Growth of Diverse and Distinct Bacteria From Groundwa-ter. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.610001

Zhou, S. et al. (2022) ‘Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic’, Journal of Hazardous Materials, 425(November 2021), pp. 1–10. Available at: https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127774.

Zhou, W. et al. (2022) ‘The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard’, Agriculture, Ecosys-tems and Environment, 326, pp. 1–12. Available at: https://doi.org/10.1016/j.agee.2021.107806