ANALISIS TEKNOEKONOMI PENERAPAN TEKNOLOGI BIOREFINERY PADA PABRIK KELAPA SAWIT
DOI:
https://doi.org/10.29122/mipi.v14i1.3978Abstract
Penerapan teknologi biorefinery pada Pabrik Kelapa Sawit (PKS) melalui pemanfaatan kembali dan daur ulang limbah atau produk samping, dapat meningkatkan efisiensi proses serta nilai tambah dari diversifikasi produk. Dalam studi ini dilakukan kajian teknoekonomi peluang penerapan teknologi biorefinery pada PKS dengan kapasitas terpasang 45 ton-TBS per jam, yang berlokasi di Riau. Opsi teknologi biorefinery yang dikaji ada 4 skenario, yaitu: (a) Skenario 1: PLT Biogas + Pabrik Pellet, (b) Skenario 2: PLT Biogas + Pabrik Kompos, (c) Skenario 3: Biogas Cofiring dan (d) Skenario 4: Biogas Cofiring + Activated Carbon. Hasil analisa teknoekonomi menunjukkan bahwa keempat opsi teknologi biorefinery di atas, layak untuk diterapkan di PKS. Instalasi PLTBg dapat menghasilkan listrik yang lebih murah daripada PLN, sehingga teknologi pellet maupun kompos memiliki kelayakan finansial yang cukup menarik. Skenario biogas cofiring sangat tergantung pada harga cangkang yang digantikan sebagai bahan bakar. Proyek secara teknoekonomi menjadi tidak layak, ketika harga cangkang di bawah Rp 500/kg. Untuk PKS yang sudah terpasang sistem PLTBg, direkomendasikan untuk mengaplikasikan pabrik pellet ataupun kompos memanfaatkan listrik dari PLTBg. Sedangkan yang belum terpasang sistem PLTBg, dapat dipertimbangkan untuk memanfaatkan biogas sebagai bahan bakar boiler, sehingga dapat menghemat cangkang yang memiliki nilai jual tinggi di pasar.
References
Gabungan Pengusaha Kelapa Sawit Indonesia (GAPKI), 2018: “GAPKI Memperkirakan produksi CPO tahun 2018 tetap naik 10%â€, https://gapki.id/news/4127/gapki-memperkirakan-produksi-cpo-tahun-2018-tetap-naik-10, dipublikasikan tanggal 2 Februari 2018.
Hilmawan Edi, 2017: “Renewable Energy from Bioresources in Indonesia Technology and Challengesâ€, Dipresentasikan pada Grand Seminar – Indonesia Chemical Engineering Challenge (IChEC), Institut Teknologi Bandung, 25 Februari 2017
Ed de Jong, Adrian Higson, Patric Walsh, and Maria Welisch: “Bio-Base Chemicals – Value Added Products from Biorefineriesâ€, IEA Bioenergy, Task 42 Biorefinery Report
Cherubini, F., Jungsmeier, G., et.al., 2009: “Toward a Common Classification approach for Biorefinery Systemsâ€, Biofuels, Bioprod. Bioref (2009), DOI: 10.1002/bbb
Farah B. Ahmad, et.al.: “The outlook of the Production of advanced fuels and chemicals from integrated oil palm biomass biorefineryâ€, Ren. Sust. Energy Rev., 109 (2019), pp. 386-411
Jesus Alberto Garcia-Nunez, Nidia Elizabeth Ramirez-Contreras, et. al.: “Evolution of Palm Oil Mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluentsâ€, Resource, Conservation and Recycling, 110 (2016), pp. 99-114
Chang, S.H., 2014: “An overview of empty fruit bunch from oil palm as feedstock for bio-oil productionâ€, Biomass Bioenergy 62 (2014)
The TRL Scale as a Research & Innovation Policy Tool, EARTO Recommendations, European Association of Research and Technology Organisations, Brussels (2014), pp. 1-17
U.S. Department of Defence: “Technology Readiness Assessment (TRA)-guidance: Washington, (2011)
Mihály Héder: “From NASA to EU: the evolution of the TRL scale in Public Sector Innovationâ€, the Innovation Journal: The Public Sector Innovation Journal, Volume 22(2), 2017,
Jesus Alberto Garcia-Nunez, Deisy Tatiana Rodriguez, et.al, 2016: “Evaluation of alternatives for the evolution of palm oil mills into biorefineriesâ€, Biomass and Bioenergy, vol 95, 2016, pp 310-329.
T. Yoshizaki, Y. Shirai, M.A. Hassan, et al. 2013: “Improved economic viability of integrated biogas energyand compost production for sustainable palm oil mill managementâ€, J. Clean.Prod. 44 (2013).
Prasertsan, S. and Sajjakulnukit, B.: “Biomass and biogas energy in Thailand: Potential, opportunity and barriersâ€, Renewable Energy, 31 (5), 2006, pp. 599-610.
Suhaimi, M. and Ong, H.K.: “Composting Empty Fruit Bunches of Oil Palmâ€, Malaysian Agricultural Research and Development Institute, 2001.
Darnoko, Guritno and Schuchardt: “Simultaneous Utilization Of Fresh Pome And EFB For Compost Productionâ€, Porim International Palm Oil Conference. - Kuala Lumpur, 2003.
Schuchardt, Darnoko and Guritno: â€Composting Of Empty Oil Palm Fruit Bunch (EFB) With Simultaneous Evaparation of Oil Mill Waste Water (POME)â€, International Oil Palm Conference. - Nusa Dua, Bali,2002.
Jae Yong Jeong, et.al.: †Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbonsâ€, Bioresource Technology, Volume 219, November 2016, pp. 357-364.
Chiew, Y.L. and Shimada, S.: “Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer – A case study of Malaysiaâ€, Biomass and Bioenergy, 51 (2013), pp 109-124.
P. Jamal, Zulkarnain M. Idris, et.al.: “Effects of physicochemical parameters on the production of phenolic acids from palm oil mill effluent under liquid-state fermentation by Aspergillus niger IBS-103ZAâ€, Food Chemistry, Volume 124, Issue 4, (2011), pp 1595-1602.
S. Takkellapati, Tao Li, and M.A. Gonzalez: â€An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefineryâ€, Clean Technology Environment Policy. 2018 September; 20(7), pp.1615–1630.
M. A. Hassan, et.al.: â€Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomassâ€, Biomass and Bioenergy, Volume 50, March 2013, pp. 1-9
M.A.K.M. Zahari et al.: †Case study for a palm biomass biorefinery utilizing renewable non-food sugars from oil palm frond for the production of poly(3-hydroxybutyrate) bioplasticâ€, Journal of Cleaner Production, 87 (2015) pp. 284-290.
Md Arafat Hossain, J. Jewaratnam, P. Ganesan: â€Prospect of hydrogen production from oil palm biomass by thermochemical process – a reviewâ€, Int. Journal of Hydrogen Energy, 41 (38), 2016, pp. 16637-16655
Nur Liyana I.Z., Salmah Husseinsyah: “Tensile Properties and Morphology of Oil Palm Empty Fruit Bunch Regenerated Cellulose Biocomposite Filmsâ€, Procedia Chemistry 19 (2016), pp. 366 – 372
S. Shinoj, R. Visvanathan, et.al.: “Oil palm fiber (OPF) and its composites: A reviewâ€,Industrial Crops and Products, 33 (1), 2011, pp. 7-22
Cynthia Ofori Boateng, Keat Teong Lee, 2014: “An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessmentâ€, Applied Thermal Engineering 62 (2014) pp. 90-104
Pavel Vaskan, Elia Ruiz Pachón, Edgard Gnansounou, 2018:â€Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazilâ€, Journal of Cleaner Production, Volume 172, 20 January 2018, Pages 3655-3668
Gyung Goo Choi, Seung Jin Oh, et.al.: â€Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shellsâ€, Bioresource Technology, Volume 178, (2015), pp. 99-107.
U.S. Department of Defence: “Technology Readiness Assessment (TRA)-guidance: Washington, (2011).
Mihály Héder: “From NASA to EU: the evolution of the TRL scale in Public Sector Innovationâ€, The Innovation Journal: The Public Sector Innovation Journal, Volume 22(2), 2017,
Chin M.J, Poh P.E., Tey B.T, et.al.;â€Biogas from Palm Oil Mill Effluent (POME): Opportunitis and challenges from Malaysia’s perpectiveâ€, Ren. Sust. Energy Rev.,vol 26 (2013), pp 717-726
Cynthia Ofori-Boateng, Keat Teong Lee, 2014: “An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessmentâ€, Applied Thermal Engineering 62 (2014) pp. 90-104
M. M. A Aziz, et.al.:â€Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas productionâ€, Renewable and Sustainable Energy Reviews, In press, corrected proof, Available online 26 November 2019, Article 109603
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open Access Policy
MIPI provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
MIPI by BRIN is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/MIPI