Optimasi Proses Epoksidasi Asam Oleat pada Scaling Up Sintesis Asam 9,10-Dihidroksi Stearat (DHSA) Bench Scale
DOI:
https://doi.org/10.29122/mipi.v12i1.2616Abstract
Sintesis asam 9,10-dihidroksi stearat (DHSA) dari asam oleat terepoksidasi merupakan salah satu upaya yang akan meningkatkan penggunaan, diversifikasi dan nilai tambah minyak kelapa sawit. Scaling up proses epoksidasi asam oleat dari skala laboratorium ke bench scale (kapasitas 5 L) terjadi perubahan volume dan geometri dari peralatan yang akan mempengaruhi proses epoksidasi itu sendiri sehingga perlu dilakukan observasi terhadap parameter-parameter yang akan digunakan dalam basic dan engineering design. Tujuan dari penelitian ini adalah melakukan scaling up proses konsistensi dari skala laboratorium ke bench scale (kap. 5 L) epoksidasi asam oleat sebagai produk antara sintesis DHSA dalam pengembangan produk turunan kelapa sawit yang akan digunakan sebagai bahan kosmetik. Scaling Up epoksidasi asam oleat dengan asam performat yang dibentuk secara in situ dilakukan menggunakan reaktor 5 liter dengan perbandingan mol asam oleat : asam format : hidrogen peroksida 50% = 1 : 1,25 : 6. Produk epoksidasi ini akan dilanjutkan untuk dihidroksilasi pada sintesis DHSA sebagai bahan kosmetik.
References
Koay, G. F. L., Abdullah, L. C., Yunus, R., Choong, S. Y. T., Siwayanan, P. & Salmiah, A. (2006). Crystallization of dihydroxystearic acid (DHSA) produced from commercial grade palm oil based crude oleic acid employing isopropyl alcohol as solvent. International Journal of Engineering and Technology, 3, 115–124.
Zafarizal Aldrin, A.H., Rosnah Ismail, and Salmiah Ahmad. (2005). Safety Evaluation for Dermal and Ocular Irritation of Palm Dihydroxystearic Acid as a Cosmetics Ingredient. Journal of Oil Palm Research vol. 17 December 2005, 160-167.
Koay, G. F. L., Guan, C. T., Zainal-Abidin, S., Ahmad, S. & Choong, T. S. Y. (2009). Habit and morphology study on the palm-based 9,10-dihydroxystearic acid (DHSA) crystals. Materials Chemistry and Physics, 114, 14–17.
Ahmad, S., Hoong, S., Sattar, N., Yusof, Y.M., Hassan, H.A., and Awang, R.,(2009). Palm-based hydroxy fatty acid. United States Patent No. US 7560578 B2. (Jul. 14, 2009).
Siti Khadijah Jamaludin, Noorfazlida Mohamed, Mohd Jumain Jalil, Ahmad Rafizan Mohamad Daud. (2014). Formation of Dihydroxystearic Acid from Hydrolysis of Palm Kernel Oil Based Epoxdized Oleic Acid. Journal of Applied Science and Agriculture, 9(11) Special 2014, 86-92.
Sinaga. (2007). Pengaruh katalis H2SO4 pada reaksi epoksidasi metil ester PFA (Palm Fatty Acid Distillate). Jurnal Teknologi Proses, 6 (1), pp. 70-74.
Turco, R. (2012). Industrial Catalytic Processes Intensification Through the Use of Microreactors. PhD Thesis in Chemical Sciences 24th cycle, Univerity of Naples Federico II. Departement of Chemistry. 21-30.
Klaas, MR and Warwel S. 1999. Complete and partial epoxidation of plant oils by lipase-catalysed perhydrolysis. Ind. Crops Prod. 9 (2):125–132.
Rios L.A., Weckes P., Schuster H., Hoeldrich W.F. (2004). Mesoporous and amorphous Ti-silicas on the epoxidation of an unsaturated oil or alkyl fatty acid ester. Pat. USA 6,734,315.
Sharpless KB, Woodard SS, and Finn MG. (1983). On the mechanism of titanium-tartrate catalyzed asymmetric epoxidation. Pure Appl. Chem. 55:1823–1836.
Guenther S, Rieth R, and Rowbottom KT. (2003). Ullmann’s Encyclopedia of Industrial Chemistry, vol. 12, sixth ed. Wiley-VCH.
Jumat Salimon and Darfizzi Derawi. (2010). Optimizing on Epoxidation of Palm Olein by Using Performic Acid. E-journal of Chemisty 2010, 7(4), 1440-1448.
Scala JL, Wool RP. (2002). The effect of fatty acid composition on the acrylation kinetics of epoxidized triacylglycerols. J Am Oil Chem Soc 79(1):59–63.
Karak. (2012). Vegetable Oil-Based Polymers: Properties, Processing and Applications. 188.
A. Campanella, M.A. Baltan´as. (2005). Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using an ion exchange resin. Catal. Today 107–108, 208–214.
Underwood, A.L. and Day, R.A., Alih Bahasa: Aloysius Handyana Pudjaatmaka Ph.D. (1989). Analisis Kimia Kuantitatif. Edisi kelima, Penerbit Erlangga, Jakarta.
GarcÃa-MarÃn H, van der Toorn JC, Mayoral JA, GarcÃa JI, Arends IWCE. (2011). Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluromethyl)-diphenyl]desenide: recyclable catalyst-containing phases through the use of glycerol-derived solvents. J Mol Catal A: Chem 2011; 334: 83–87.
Yang R, Zhang Y, Zhao J. (2011). Methyltrioxorhenium-catalyzed epoxidation of alkenes with hydrogen peroxide as an oxidant and 1-methyl-3-(butyl-4-sulfonate) imidazolium betaine as an additive. Catal Commun 2011; 12:923–6.
Dinda, S. Patwardhan, A.V., Goud, V.V. & Pradhan, N.C. (2008). Epoxidation of cotton seed oil by aqueous hydrogen peroxide catalyzed by liquid inorganic acids. Bioresource Technology, 99: 3737-3744.
Gryglewicz, S., Piechocki, W. & Gryglewicz, G. (2003). Preparation of Polyol Esters Based on Vegetable and Animal Fats. Bioresource Technology 87: 35-39.
A. Campanella, Carina Fontanini, Miguel A. Baltanas. (2008). High Yield Epoxidation of Fatty Acid Methyl Ester with Performic Acid Generated In Situ. Chem. Eng. J144, 466-475.
Gunstone F D and Padley F B. (1997). Lipid Technologies and Applications; Marcel Dekker, Inc., New York, 759.
Fereidoon Shahidi. (2005). Bailey’s Industrial Oil and Fat Products. Sixth Edition, Six Volume Set. John Wiley & Sons, Inc.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Open Access Policy
MIPI provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
MIPI by BRIN is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at http://ejurnal.bppt.go.id/index.php/MIPI