MICROSTRUCTURE AND OXIDATION BEHAVIOR OF THE OXIDE DISPERSION STRENGTHENED STAINLESS STEEL 316L WITH ZIRCONIA DISPERSION

Authors

  • Syahfandi Ahda Center for Science and Technology of Advanced Materials National Nuclear Energy Agency
  • Agus Sujatno Center for Science and Technology of Advanced Materials National Nuclear Energy Agency
  • Diene Diene Center for Science and Technology of Advanced Materials National Nuclear Energy Agency
  • Nanda Shabrina Center for Science and Technology of Advanced Materials National Nuclear Energy Agency
  • Sulistioso Giat Center for Science and Technology of Advanced Materials National Nuclear Energy Agency
  • Bandriyana Center for Science and Technology of Advanced Materials National Nuclear Energy Agency

DOI:

https://doi.org/10.29122/mipi.v15i2.4775

Keywords:

ODS steel, zirconia, microstructure, oxidation, powder metallurgy

Abstract

Synthesis of the oxide dispersion sODS steels was performed by dispersing 0.5 wt % zirconia to the stainless steel SS 316L by the powder metallurgy method. The ball milling process was carried out for pre-alloying the elements continued with the consolidation performed by the compaction and sintering process using the APS (Arc Plasma Sintering). Analysis of microstructure was performed by observing the morphology, identify the phase and evaluate the oxide distribution. An oxidation test was carried out at 700oC for 8 hours using the MSB (Magnetic Suspension Balanced) apparatus to evaluate the primary oxidation curve. The same grain fineness consists of 2 dominant phases, so the presence of an austenitic phase and a ferritic phase has been analyzed from the X-Ray Diffraction pattern. The homogeneous distribution of zirconia was observed, followed by improvements in mechanical properties, which could be identified by hardness testing. The parabolic phenomenon oxidation curve was explained by the excellent high-temperature oxidation behaviour of the ODS steel, followed by the formation of  ZrO2 oxide protective thin layer.

References

G. Zheng, B. Kelleher, G. Cao, M. Anderson, T. Allen, and K. Sridharan, “Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt,” J. Nucl. Mater., vol. 461, no. June, pp. 143–150, 2015, DOI: 10.1016/j.jnucmat.2015.03.004.

H. Savaloni, E. Agha-Taheri, and F. Abdi, “On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen,” J. Theor. Appl. Phys., vol. 10, no. 2, pp. 149–156, 2016, DOI: 10.1007/s40094-016-0213-0.

IAEA, “IAEA Nuclear Energy Series Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies — Operational Behaviour,” IAEA Nucl. Energy Ser., p. 103, 2012.

M. Serrano, A. García-Junceda, R. Hernández, and M. H. Mayoral, “On anisotropy of ferritic ODS alloys,” Energy Mater. Mater. Sci. Eng. Energy Syst., vol. 9, no. 3, pp. 1664–1668, 2014, doi: 10.1179/1743284714Y.0000000552.

S. Li et al., “Microstructure and mechanical properties of 16 Cr-ODS ferritic steel for advanced nuclear energy system,” J. Phys. Conf. Ser., vol. 419, no. 1, 2013, DOI: 10.1088/1742-6596/419/1/012036.

Q. Zhao et al., “Microstructure and tensile properties of a 14Cr ODS ferritic steel,” Mater. Sci. Eng. A, 2017, DOI: 10.1016/j.msea.2016.10.118.

J. Macías-Delgado et al., “Microstructure and tensile properties of ODS ferritic steels mechanically alloyed with Fe2Y,” Nucl. Mater. Energy, 2016, DOI: 10.1016/j.nme.2016.09.019.

A. Hota?, P. Kejzlar, M. Palm, and J. Mlna?ík, “The effect of Zr on high-temperature oxidation behaviour of Fe3Al-based alloys,” Corros. Sci., 2015, DOI: 10.1016/j.corsci.2015.07.016.

J. Rakhmonov, G. Timelli, and F. Bonollo, “The Effect of Transition Elements on High-Temperature Mechanical Properties of Al–Si Foundry Alloys–A Review,” Adv. Eng. Mater., vol. 18, no. 7, pp. 1096–1105, 2016, DOI: 10.1002/adem.201500468.

J. L. Cardoso, M. Mandel, L. Krüger, L. F. G. Herculano, P. deLima Neto, and M. J. G. Da Silva, “Corrosion behavior of austenitic stainless steels in CO2-saturated synthetic oil field formation water,” Mater. Res., vol. 22, no. 4, pp. 1–11, 2019, DOI: 10.1590/1980-5373-MR-2018-0334.

M. Zi?tala et al., "The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping," Mater. Sci. Eng. A vol. 677, pp. 1–10, 2016, DOI: 10.1016/j.msea.2016.09.028.

O. Mangla and S. Roy, “Monoclinic Zirconium Oxide Nanostructures Having Tunable Band Gap Synthesized under Extremely Non-Equilibrium Plasma Conditions,” Proceedings, vol. 3, no. 1, p. 10, 2018, DOI: 10.3390/iocn_2018-1-05486.

C. T. Kniess, J. C. de Lima, and P. B. Prates, The Quantification of Crystalline Phases in Materials: Applications of Rietveld Method. 2012.

N. Mitra, P. Sarkar, S. Deb, and S. Basu Majumder, “Multiscale Estimation of Elastic Constants of Hydrated Cement,” J. Eng. Mech., vol. 145, no. 4, p. 04019014, 2019, DOI: 10.1061/(ASCE)em.1943-7889.0001582

T. Kurniawan, F. A. B. Fauzi, and Y. P. Asmara, “High-temperature oxidation of fe-cr steels in steam condition – A review,” Indones. J. Sci. Technol., vol. 1, no. 1, pp. 107–114, 2016, DOI: 10.17509/ijost.v1i1.2217.

Bandriyana, A. H. Ismoyo, T. Sujitno, and A. Dimyati, "Microstructure and oxidation behavior of high strength steel AISI 410 implanted with nitrogen ion," AIP Conf. Proc., vol. 1725, no. April 2016, DOI: 10.1063/1.4945464.

A. Dimyati, H. J. Penkalla, P. Untoro, D. Naumenko, W. J. Quadakkers, and J. Mayer, “High-temperature oxidation of FeCrAl alloys: The effect of Mg incorporation into the alumina scale,” Zeitschrift fuer Met. Res. Adv. Tech., 2003, DOI: 10.3139/146.030180.

Z. Oksiuta and E. Och, “Corrosion resistanceof mechanically alloyed 14%cr ODS ferritic steel,” Acta Mech. Autom., vol. 7, no. 1, pp. 38–41, 2013, doi: 10.2478/ama-2013-0007.

J. L. Cardoso, M. Mandel, L. Krüger, L. F. G. Herculano,P. deLima Neto, and M. J. G. Da Silva, “Corrosion behavior of austenitic stainless steels in CO2-saturated synthetic oil field formation water,” Mater. Res., vol. 22, no. 4, pp. 1–11, 2019, DOI: 10.1590/1980-5373-MR-2018-0334.

V. N. Rajakovi?-Ognjanovi? and B. N. Grgur, “Corrosion of an austenite and ferrite stainless steel weld,” J. Serbian Chem. Soc., vol. 76, no. 7, pp. 1027–1035, 2011, DOI: 10.2298/JSC100726090R.

H. Li et al., “A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air,” J. Alloys Compd., 2016, DOI: 10.1016/j.jallcom.2016.06.023.

Downloads

Published

13-09-2023

How to Cite

Ahda, S., Sujatno, A., Diene, D., Shabrina, N., Giat, S., & Bandriyana. (2023). MICROSTRUCTURE AND OXIDATION BEHAVIOR OF THE OXIDE DISPERSION STRENGTHENED STAINLESS STEEL 316L WITH ZIRCONIA DISPERSION. Majalah Ilmiah Pengkajian Industri; Journal of Industrial Research and Innovation, 15(2), 115–120. https://doi.org/10.29122/mipi.v15i2.4775