Analisa Gaya Penekanan pada Proses ECAP Batang Kuningan CuZn 70/30

Authors

  • Suryadi Pusat teknologi Industri Proses, BPPT, Puspiptek Serpong
  • Amin Suhadi Balai Besar Teknologi Kekuatan Struktur B2TKS, BPPT, Puspiptek Serpong
  • Dedi Priadi Departemen Teknik Metalurgi dan Material, Universitas Indonesia Depok
  • E. S. Siradj Departemen Teknik Metalurgi dan Material, Universitas Indonesia Depok

DOI:

https://doi.org/10.29122/mipi.v8i1.3646

Keywords:

ECAP, pressing load, forming energy, hardness, grain refinement, Brass

Abstract

Telah dilakukan percobaan severe plastic deformation (SPD) dengan metodeequal channel angular pressing (ECAP) pada batang kuningan CuZn 70/30 diameter 10 mm sampai 5 pas. Gaya penekanan meningkat secara signifikan pada awal langkah penekanan dan mencapai nilai maksimum lalu melandai. Pada pas pertama gaya penekanan mencapai 115 kN, pas kedua 130 kN, pas ketiga mecapai 150 kN dan pada pas keempat 165 kN. Dari pengukuran luas area di bawah kurva gaya penekanan diperoleh energi total pembentukan pada proses ECAP batang kuningan persatuan panjang adalah 95 Joule/mm pada pas pertama, sampai 130 Joule/mm pada pas ketiga, dan turun 125 Juole/mm pada pas keempat. Secara kumulatif total energi persatuan panjang meningkat secara linier sesuai dengan peningkatan jumpah pas, dimana pada pas keempat mencapai 597 MPa. Peningkatan gaya penekanan dan energi penekanan sebanding dengan terjadinya peningkatan kekerasan pada batang kuningan dan terjadinya penghalusan butir.

Kata kunci: ECAP, gaya penekanan, energi pembentukan, kekerasan, penghalusan butir, kuningan.

Abstract

Experiments of severe plastic deformation (SPD) have been carried out by the method of equal channel angular pressing (ECAP) on brass rods CuZn 70/30 diameter 10 mm to 5 pas. Pressing force significantly is increased emphasis on early steps and reaches a maximum value and then ramp. At the first pas the pressing force reached 115 kN, the second pass 130 kN, the third pass 150 kN and fouth pass is 165. From measurements of the area under the curve of pressing force, the total forming energy per unit length generated to form the brass rod in ECAP is 95 Joule / mm at the first pass, 130 Joules / mm at third pass and down to 125 Joule/mm at fouth pass. Cumulatively, the total forming energy per unit length increases linearly according to the increase in number of ECAP pass, where the fourth pass reach 597 Joule/mm. Increased emphasis pressing load and forming energy is proportional to the increase in hardness of the brass rod and the grain refinement.

Keywords: ECAP, pressing load, forming energy, hardness, grain refinement, Brass

References

William D. Callister, Jr., Fundamental of Material science and Engineering, John Willey and Son, 2 nd ed.,2005.

A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, Severe plastic deformation (SPD) processes for metals, CIRP Annals - Manufacturing Technology 57 (2008) 716

Pasebani Somayeh, Toroghinejad Mohammad Reza , Nano-Grained 70/30 Brass Strip Produced By Accumulative Roll-Bonding (ARB) Process. Materials science & engineering. A. Structural materials: properties, microstructure and processing, vol.527 n.3 pp:491-497 (2010)

Somayeh Pasebani, Mohammad Reza, Toroghinejad, Majid Hosseini, Jerzy Szpunarc, Textural evolution of nano- grained 70/30 brass produced by accumulative roll-bonding – Materials Science and Engineering A 527 (2010) 2050–2056 (Received 14 July 2009)

N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Ultra-Fine Grained Bulk Steel Produced By Accumulative Roll-Bonding (ARB) Process, Scripta Materialia, Vol. 40, No. 7, pp. 795–800, 1999 (Received December 22, 1998) (Accepted January 7, 1999)

V. Subramanya Sarma, K. Sivaprasad, D. Sturm, M. Heilmaier, Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing, Materials Science and Engineering A 489 (2008) 253–258

Suryadi, R.A.M.Napitupulu, E. S. Siradj, Dedi Priadi, Analisa Penghalusan Butir Kuningan Alfa Yang Mengalami Proses ECAP, Majalah Pengkajian Industri Vol. 7 No.1 (2013)

Reihanian M., Ebrahimi R., Tsuji N., Moshksar M.M., Analysis Of The Mechanical Properties And Deformation Behavior Of Nanostructured Commercially Pure Al Processed By Equal Channel Angular Pressing (ECAP), Materials Science and Engineering A 473 (2008) 189–194.

Figueiredo R. B., Pinheiro I. P., Aguilar M. T. P., Modenesi P., J., Cetlin P. R., The Finite Element Analysis Of Equal Channel Angular Pressing (ECAP) Considering The Strain Path Dependence Of The Work Hardening Of Metals, Journal of Materials Processing Technology 180 (2006) 30–36

Y.G. Jin, I. H. Son, Y.T. Im, Three- dimension finite element analysis of multi-pass equal channel angular extrusion of aluminum AA1050 with split dies, Material Science and Engieering A 503 (2009) 152-155.

A. Mishra, M. Marti, M.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, High- strain-rate response of ultrafine grained copper, Acta Materialia xxx (2008).

P.L. Suna, E.K. Cerreta, J.F. Bingert, G.T. Gray III, M.F. Hundley, Enhanced tensile ductility through boundary structure engineering in ultrafine-grained aluminum, Materials Science and Engineering A 464 (2007) 343–350

J. Dutkiewicz , F. Masdeu, P. Malczewski , A. Kukula, Microstructure and properties of α + β brass after ECAP processing, International Scientific Journal Archives of Material Science and Engineering Vol 39 Issue 2 October 2009 P 80-83, World Academy of Materialsand Manufacturing Engineering

Cheng Xu, Zenji Horita, Minoru Furukawa, and Terence G. Langdon, Using Equal-Channel Angular Pressing for the Production of Superplastic Aluminum and Magnesium Alloys, Journal of Materials Engineering and Performance, Volume 13(6) December 2004.

Downloads

Published

13-09-2023

How to Cite

Suryadi, Amin Suhadi, Dedi Priadi, & E. S. Siradj. (2023). Analisa Gaya Penekanan pada Proses ECAP Batang Kuningan CuZn 70/30. Majalah Ilmiah Pengkajian Industri; Journal of Industrial Research and Innovation, 8(1), 39–46. https://doi.org/10.29122/mipi.v8i1.3646