A Parametric Study of Torrefaction Technology of Agricultural Residues in Indonesia

Authors

  • Ade Andini BRIN
  • Arfiana
  • Era Restu Finalis
  • Fausiah
  • Endro Wahju Tjahjono
  • Muksin Saleh
  • Iman
  • Bagus Alif Firmandoko
  • Dorit Bayu Islam Nuswantoro
  • Erbert Ferdy Destian
  • Herson Bangun
  • Himawan Sutriyanto
  • Patrick Rousset

DOI:

https://doi.org/10.55981/mipi.2023.3001

Keywords:

Crop Residues, Emission, Open Burning, Torrefaction, Tubular Furnace

Abstract

Enhancing the value of biomass residues holds promise for mitigating open burning. However, biomass utilization as an energy feedstock encounters its own set of challenges owing to inherent properties. To address these concerns, torrefaction, an essential thermal pretreatment process for carbonaceous materials, emerges as a viable solution. In a laboratory experiment conducted in a static tube reactor, torrefaction was investigated at temperatures of 250°C for 45 minutes and 300°C for 5 minutes. The findings revealed that rice straw, corncob, and cassava stalk exhibit properties exceptionally suited for utilization as energy feedstock. Notably, at 300°C corncob attains a carbon content of 58.10%, a fixed carbon content of 34.35%, and a calorific value of 22.46 MJ/kg.

References

A. Andini, S. Bonnet, P. Rousset, and U. Hasanudin, “Impact of open burning of crop residues on air pollution and climate change in Indonesia,” Curr. Sci., vol. 115, no. 12, pp. 2259–2266, Dec. 2018, doi: 10.18520/cs/v115/i12/2259-2266.

B. Jifara Daba and S. Mekuria Hailegiorgis, “Torrefaction of corncob and khat stem biomass to enhance the energy content of the solid biomass and parametric optimization,” Bioresour. Technol. Reports, vol. 21, p. 101381, Feb. 2023, doi: 10.1016/j.biteb.2023.101381.

P. Basu, Biomass Gasification and Pyrolysis Practical Design and Theory. Elsevier, 2010. doi: 10.1016/C2009-0-20099-7.

P. Basu, Biomass Gasification, Pyrolysis and Torrefaction. Elsevier, 2013. doi: 10.1016/C2011-0-07564-6.

J. Martín-Pascual, J. Jódar, M. L. Rodríguez, and M. Zamorano, “Determination of the optimal operative conditions for the torrefaction of olive waste biomass,” Sustain., vol. 12, no. 16, p. 6411, Aug. 2020, doi: 10.3390/SU12166411.

S. K. Thengane, K. S. Kung, A. Gomez-Barea, and A. F. Ghoniem, “Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market,” Prog. Energy Combust. Sci., vol. 93, p. 101040, Nov. 2022, doi: 10.1016/j.pecs.2022.101040.

D. Vamvuka, E. Kakaras, E. Kastanaki, and P. Grammelis, “Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite☆,” Fuel, vol. 82, no. 15–17, pp. 1949–1960, Oct. 2003, doi: 10.1016/S0016-2361(03)00153-4.

H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang, “In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin,” Energy & Fuels, vol. 20, no. 1, pp. 388–393, Jan. 2006, doi: 10.1021/ef0580117.

A. Gani and I. Naruse, “Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass,” Renew. Energy, vol. 32, no. 4, pp. 649–661, Apr. 2007, doi: 10.1016/j.renene.2006.02.017.

M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Torrefaction of wood: Part 1. Weight loss kinetics,” J. Anal. Appl. Pyrolysis, vol. 77, no. 1, pp. 28–34, Aug. 2006, doi: 10.1016/j.jaap.2006.01.002.

T. Sebio-Puñal, S. Naya, J. López-Beceiro, J. Tarrío-Saavedra, and R. Artiaga, “Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species,” J. Therm. Anal. Calorim., vol. 109, no. 3, pp. 1163–1167, Sep. 2012, doi: 10.1007/s10973-011-2133-1.

M. Sudo, S.; Takahasi, F.; Takeuchi, “Chemical properties of biomass,” in Biomass Handbook, Gordon and Breach Science Publishers, 1989, p. 899).

M. J. Prins, “Thermodynamic analysis of biomass gasification and torrefaction,” Technische Universiteit Eindhoven, 2005. doi: doi.org/10.6100/IR583729.

H. Nam and S. Capareda, “Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology),” Energy, vol. 91, pp. 507–516, Nov. 2015, doi: 10.1016/j.energy.2015.08.064.

D. Eseltine, S. S. Thanapal, K. Annamalai, and D. Ranjan, “Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases,” Fuel, vol. 113, pp. 379–388, Nov. 2013, doi: 10.1016/j.fuel.2013.04.085.

Q. Chen, J. Zhou, B. Liu, Q. Mei, and Z. Luo, “Influence of torrefaction pretreatment on biomass gasification technology,” Chinese Sci. Bull., vol. 56, no. 14, pp. 1449–1456, May 2011, doi: 10.1007/s11434-010-4292-z.

M. Strandberg, I. Olofsson, L. Pommer, S. Wiklund-Lindström, K. Åberg, and A. Nordin, “Effects of temperature and residence time on continuous torrefaction of spruce wood,” Fuel Process. Technol., vol. 134, pp. 387–398, Jun. 2015, doi: 10.1016/j.fuproc.2015.02.021.

T. G. Bridgeman, J. M. Jones, I. Shield, and P. T. Williams, “Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties,” Fuel, vol. 87, no. 6, pp. 844–856, May 2008, doi: 10.1016/j.fuel.2007.05.041.

D. Medic, M. Darr, A. Shah, B. Potter, and J. Zimmerman, “Effects of torrefaction process parameters on biomass feedstock upgrading,” Fuel, vol. 91, no. 1, pp. 147–154, Jan. 2012, doi: 10.1016/j.fuel.2011.07.019.

M. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski, “Biomass upgrading by torrefaction for the production of biofuels: A review,” Biomass and Bioenergy, Jul. 2011, doi: 10.1016/j.biombioe.2011.06.023.

B. Arias, C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis, “Influence of torrefaction on the grindability and reactivity of woody biomass,” Fuel Process. Technol., vol. 89, no. 2, pp. 169–175, Feb. 2008, doi: 10.1016/j.fuproc.2007.09.002.

Z. Tan and A. Lagerkvist, “Phosphorus recovery from the biomass ash: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3588–3602, Oct. 2011, doi: 10.1016/j.rser.2011.05.016.

M. Sharma, A. A. Khan, S. K. Puri, and D. K. Tuli, “Wood ash as a potential heterogeneous catalyst for biodiesel synthesis,” Biomass and Bioenergy, vol. 41, pp. 94–106, Jun. 2012, doi: 10.1016/j.biombioe.2012.02.017.

V. Strezov, M. Patterson, V. Zymla, K. Fisher, T. J. Evans, and P. F. Nelson, “Fundamental aspects of biomass carbonisation,” J. Anal. Appl. Pyrolysis, vol. 79, no. 1–2, pp. 91–100, May 2007, doi: 10.1016/j.jaap.2006.10.014.

M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “More efficient biomass gasification via torrefaction,” Energy, vol. 31, no. 15, pp. 3458–3470, Dec. 2006, doi: 10.1016/j.energy.2006.03.008.

H. Mukhtar, N. Feroze, H. M. S. Munir, F. Javed, and M. Kazmi, “Torrefaction process optimization of agriwaste for energy densification,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 42, no. 20, pp. 2526–2544, Oct. 2020, doi: 10.1080/15567036.2019.1609626.

J. Wannapeera, “Study on upgrading of biomass by Torrefaction and degradative solvent extraction.,” King Mongkut’s University of Technology Thonburi, 2011.

B. Keivani, S. Gultekin, H. Olgun, and A. T. Atimtay, “Torrefaction of pine wood in a continuous system and optimization of torrefaction conditions,” Int. J. Energy Res., vol. 42, no. 15, pp. 4597–4609, Dec. 2018, doi: 10.1002/er.4201.

W. Hidayat, F. Febrianto, B. D. Purusatama, and N. H. Kim, “Effects of Heat Treatment on the Color Change and Dimensional Stability of Gmelina arborea and Melia azedarach Woods,” E3S Web Conf., vol. 68, p. 03010, Nov. 2018, doi: 10.1051/e3sconf/20186803010.

T. Yulianto, I. G. Febryano, D. A. Iryani, A. Haryanto, U. Hasanudin, and W. Hidayat, “PERUBAHAN SIFAT FISIS PELET TANDAN KOSONG KELAPA SAWIT HASIL TOREFAKSI,” J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 9, no. 2, p. 104, Jun. 2020, doi: 10.23960/jtep-l.v9i2.104-111.

A. Hadiyane, “Perubahan sifat-sifat komponen penyusun kayu, struktur sel kayu dan sifat-sifat dasar kayu terdensifikasi secara parsial,” Institute Pertanian Bogor, 2011.

T. Botelho, M. Costa, M. Wilk, and A. Magdziarz, “Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace,” Fuel, vol. 212, pp. 95–100, Jan. 2018, doi: 10.1016/j.fuel.2017.09.118.

M. Danish, M. Naqvi, U. Farooq, and S. Naqvi, “Characterization of South Asian Agricultural Residues for Potential Utilization in Future ‘energy mix,’” Energy Procedia, vol. 75, pp. 2974–2980, Aug. 2015, doi: 10.1016/j.egypro.2015.07.604.

Downloads

Published

29-09-2023

How to Cite

Andini, A., Arfiana, Finalis, E. R., Fausiah, Tjahjono, E. W., Saleh, M., Iman, Firmandoko, B. A., Nuswantoro, D. B. I., Destian, E. F., Bangun, H., Sutriyanto, H., & Rousset, P. (2023). A Parametric Study of Torrefaction Technology of Agricultural Residues in Indonesia . Majalah Ilmiah Pengkajian Industri; Journal of Industrial Research and Innovation, 17(2), 47–54. https://doi.org/10.55981/mipi.2023.3001