ASSESSMENT OF BACTERIAL LEAF BLIGHT DISEASE RESISTANCE OF INDONESIAN RICE GERMPLASMS USING SSR MARKERS

Fatimah*, Tasliah, Joko Prasetiyono, Mahrup

Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Indonesia.

Abstract

Bacterial leaf blight (BLB) caused by *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) is a serious disease in rice plants worldwide. Yield losses caused by *Xoo* can be as high as 50% in some parts of Asia. *Xa7* gene can potentially confer a broad resistance to BLB. Evaluation of disease resistance characteristics in early breeding generations of rice is important to develop varieties with better resistance. This study reports the evaluation of 167 Indonesian rice germplasms against three BLB isolates/pathotypes in a green house setting and the genotyping of 56 Indonesian rice germplasm using 12 SSR markers linked to *Xa7* BLB resistance gene. The majority of the indigenous rice germplasms was found to be susceptible to three BLB isolates/pathotypes tested. Sate Liko from Bantul, Yogyakarta, Horeg from Cirebon, West Java and Sijem from Malang, East Java revealed consistent resistance to three isolates/pathotypes tested based on BLB evaluation in a greenhouse, UPGMA analysis, and genotyping. Pathotype XII displayed more virulence to Indonesian rice varieties tested compared to pathotypes VI and V. The association analysis using the General linear model identified six markers associated with BLB resistance and two markers were highly associated (RM20589 and RM20590). This information will be useful for future studies of BLB resistance in rice plants.

Keywords: Bacterial leaf blight, Molecular marker, SSR, Xanthomonas oryzae, Xa7

*Corresponding author:

Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Jl. Tentara Pelajar No.3A Cimanggu, Bogor 16111.

Tel. +62-21-8754587, Fax. +62-21-87754588

E-mail. fatimahsuw@gmail.com

Introduction

BLB caused by *Xanthomonas oryzae* pv. *Oryzae (Xoo)*, is a serious disease affecting rice plants in tropical lowland environment. This disease is not only widespread throughout Asia but also occurring in Australia, the United States and in several rice growing countries of Latin America and Africa. Yield losses caused by *Xoo* typically range from 20 to 30% and can be as high as 50% in some parts of Asia (Adhikari *et al.*, 1995).

Hifni and Kardin (1998) reported that there are 12 pathotypes of *Xoo* based on IRRI differential varieties. Pathotype V, the most dominant pathotype (46.23%), can overcome at least seven virulence genes (*Xa1*, *Xa2*, *Xa3*, *Xa4*, *Xa10*, *Xa11*, and *Xa14*), while Pathotype VI as the second dominant pathotype (11,32%) can overcome at least eight virulence genes

(Xa1, Xa2, Xa3, Xa4, Xa10, Xa11, Xa14 and Xa21). Furthermore, the most virulent one, Pathotype XII can overcome at least 10 virulence genes (Xa1, Xa2, Xa3, Xa4, xa5, Xa7, Xa10, Xa11, Xa14, and Xa21).

Genetic diversity is a key factor in sustaining agricultural productivity. In order to preserve and make this diversity available for crop improvement, tremendous efforts have been made in the collection, maintenance, and classical characterization of germplasm. Generating a new crop variety with certain desirable traits requires a germplasm collection with a wide genetic diversity. The germplasm collection may be of local, introduced, or breed varieties (Syam and Hermanto, 1995).

In order to develop BLB resistant varieties, selection of appropriate donor parents that show a broad spectrum of resistance to other *Xoo* pathotypes is important for the breeding

program. Thus, evaluation of introduced and indigenous rice germplasms for their BLB resistance profile is one of the primary tasks for rice genetic resources management and utilization.

Molecular markers have shown a tremendous potential for characterizing genetic diversity. The availability of DNA markers linked to genes for BLB resistance would accelerate breeding programs. Furthermore, PCR-based markers closely linked to BLB resistance genes would be very useful for an efficient marker-assisted selection.

Recently, 45 BLB resistance genes (Xa) from cultivated rice and wild species have been identified and mapped (Neelam et al., 2020). In Indonesia, xa5, Xa7, and Xa21 are relatively effective against the majority of the isolates/pathotypes, so that resistance genes can be incorporated into our rice breeding program (Hifni and Kardin, 1998; Tasliah et al., 2013; Fatimah et al., 2014). Due to the lower percentage of Xoo pathotypes having the ability to overcome Xa7, subsequent addition of virulence genes that can overcome Xa7 into the Xoo population occurred after the integration of the virulence genes that can overcome xa5 and Xa21 (Hifni and Kardin, 1998).

Located in chromosome 6, Xa7 is a dominant resistance gene directed against Xoo and was originally identified in the rice cultivar DV85, IRRI accession number 8839 (Sidhu et al., 1978). The gene was transferred to cultivar IR24 and near isogenic line IRBB7, where Xa7 was integrated by recurrent backcrossing (Ogawa et al., 1991). Xa7 is an example of an R-gene that is directed against an avirulence gene family and is a potential source of broad resistance to BLB affecting rice plants (Cruz et al., 2000).

The objective of this study is to evaluate BLB resistance of 167 Indonesian rice germplasms in a green house against three BLB isolates/pathotypes and to perform genotyping on 56 Indonesian rice germplasms using 12 SSR markers linked to *Xa7* BLB resistance gene. These information will be useful for future studies on BLB resistance in rice plants.

Materials and Methods

Plant Materials. One hundred and sixty-five accessions of Indonesian rice germplasm

provided by Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD) and two IRRI varieties were used for BLB resistance evaluation. IRBB7 and Conde for containing Xa7 resistance gene were used as the resistant controls and IR24 and Kencana Bali as a susceptible control (Table 1). The Xoo isolates/pathotypes provided by ICABIOGRAD were used for BLB evaluation (Tasliah et al., 2013) (Table 2).

Disease Assesment of Rice Germplasms.

Rice plants were grown under greenhouse conditions. These rice germplasms were first sown in plastic boxes, and 14 days later, the seedlings were transplanted into a container box containing natural paddy soil. The experimental units consisted of nine rows with a spacing of 6 cm. Each rice germplasm was transplanted in one row of five plants. The seedlings were watered twice a day using a sprinkle system to maintain the proper humidity and the optimum conditions for the growth of *Xoo*.

The bacterial suspension for inoculation was prepared using the two-day old culture of each isolate in 20 ml of sterilized distilled water adjusted of 10⁸ CFU/ml. To test the virulence of the strains, the fully expanded leaves were inoculated by the leaf cutting method (Kauffman *et al.*, 1973).

Bacterial inoculation was done when rice plants were 40 days old. Evaluation for resistance of each germplasm was done at 14 DAI (days after inoculation) according to the Standard Evaluation System for Rice. Ten randomly selected leaf clippings of each line-isolate combination were rated for their percent ratio of lesion length to entire leaf length. The symptoms were scored as resistant if the average attack intensity was 25% or less (score 1 - 4) and as susceptible if the average attack intensity was greater than 25% (score 5 to 9) (Chaudry, 1996).

Molecular Marker Analysis.

SSR genotyping of twelve SSR markers (Table 3) on chromosome 6 that are linked to *Xa7* as previously reported by Chen *et al.* (2008) were employed to identify the *Xa7* gene on randomly selected 56 rice accession (no.111-167), which included the resistant and susceptible accessions. Total genomic DNA was extracted using young leaves at seedling

stage as described previously (Dellaporta, 1983) for each individual accession. Genomic DNA concentration was measured spectrophotometer and the DNA samples were diluted to 10ng/ul using sterilized distilled water and stored in microfuge tubes at 4°C for further use.

Table 1. List of ric study

n microruge	tubes at 4 C for	44	12674	Padi Belanak Kosambi	Bangli, Bali
		45	12968	Padi Jambai	Kampar, Riau
rice germplasms used in this		46	14866	Terotel	Sawahlunto, West Sumatera
ecession	Origin	47	14895	Wuri Bura	West Nusa Tenggara
ime	Origin	48	14903	Samada	West Nusa Tenggara
tih Ampat	West Sumatera	49	14915	Dendak	Sumbawa, West Nusa

No. Acc.No.

12571

12574

42

43

Accession

Name

Laila

Gondok

Origin

Sumatera

Sumatera

Tanah Datar, West

Tanah Datar, West

	stuay	<u>' </u>					Sumatera
No.	Acc.No.	Accession Name	Origin	47 48	14895 14903	Wuri Bura Samada	West Nusa Tenggara West Nusa Tenggara
1	1430	Putih Ampat Angkek	West Sumatera	49	14915	Dendak	Sumbawa, West Nusa Tenggara
2	3983	Reli	West Kalimantan	50	14986	Lumbuk	Central Java
3	3995	Seng Kumang	West Kalimantan	51	18960	Secangkir	South Kalimantan
4	3996	Mingkai	West Kalimantan	52	19100	Thapora	Philippine
5	4043	Rijah	Central Java	53	19101	Tuma	Philippine
6	4050	Aluh Kuranji	West Sumatera				Kodya Bogor, West
7	4071	Kuning Biaro	West Sumatera	54	19125	Seratus Malam	Java
8	4084	Gondak Kiah	West Sumatera	55	19228	Brown Gora	Philippine
0	41.41	Si Rendah	W C	56	19229	Dular	Philippine
9	4141	Cogok	West Sumatera	57	19250	Sibentar	Karo, North Sumatera
10	4206	Tromas	Central Java	58	19251	Siremut	Karo, North Sumatera
11	4213	Goter	East Java	5 0	10771	D 11 1	Kodya Bogor, West
12	4214	Untup	East Java	59	19661	Buhbolon	Java
13	4256	Mayor	East Java	60	10772	D 44	Kodya Bogor, West
14	4305	Baliman Putih	South Kalimantan	60	19673	Danau Atas	Java
15	4310	Biduin	South Kalimantan	<i>C</i> 1	10/77	D	Kodya Bogor, West
16	4311	Randah Pala	South Kalimantan	61	19677	Poso	Java
17	1215	Lalantik	C -41 IZ 1'	62	19701	Engkoran	West Kalimantan
17	4315	Bamban	South Kalimantan	(2	10702	-	Sanggau, West
18	4316	Raden Pulatar	South Kalimantan	63	19703	Baung	Kalimantan
19	4324	Siam Parapuk	South Kalimantan	<i>(</i> 1	10700	D ' C	Sanggau, West
20	4491	Sara Kasa	Central Sulawesi	64	19708	Banjar Sawan	Kalimantan
21	5593	Pingkan	Central Sulawesi	65	19710	Kail	West Kalimantan
22	5594	Pimpin	Central Sulawesi	66	10757	Payak	Sambas, West
23	6859	Bengkongang	Central Java	66	19757	Tembakau	Kalimantan
24	6967	Cicih Buleleng	Bali	67	10769	D.:l	Kapuas Hulu, West
25	7237	Angkong	West Java	67	19768	Ribun	Kalimantan
26	9151	Padi Book	South East Sulawesi	60	10777	D4!	Kapuas Hulu, West
27	9154	Longandobu	South East Sulawesi	68	19777	Bonti	Kalimantan
28	9155	Padi Ana-Ana	South East Sulawesi	69	20227	Idi	Aceh
29	9173	Anambar	South East Sulawesi	70	20228	Syair	Aceh
30	9186	Wulu Mata	South East Sulawesi	71	20241	Rangkoh	Aceh
31	9458	Ingsa Cendana	Bali	72	20244	Si Reguek	Aceh
32	9467	Ingsa Bondol	Bali	73	20245	Putih Panjah	Aceh
33	10613	Banja Ili	South East Sulawesi	74	20256	Bho	Aceh
34	12270	Rejuno	Tanjung Jabung, Jambi	75	20513	Lemo	Central Kalimantan
25	12207	A 1	Pekalongan, Central	76	20673	Si Motung	North Sumatera
35	12307	Abang	Java	77	20678	Si Anak Bogor	North Sumatera
26	12308	Segon	Kodya Bogor, West	78	20679	Si Lotik	North Sumatera
36	12308	Borondol	Java	79	20692	Si Pulo	North Sumatera
37	12335	Mojang	Garut, West Java	19	20682	Angkola	North Sumatera
38	12338	Rangkong	Tangerang, West Java	90	20692	Si Pulo Manda	North Sumatera
		Cere	C C	80	20683	iling	norm Sumatera
39	12344	Mentik/Toray	Purwakarta, West Java	81	20688	Putri Manis	North Sumatera
40	12352	Hawara Batu	Cianjur, West Java	82	20694	Kuala Deli	North Sumatera
41	12368	Muncang	Cianjur, West Java	83	20708	Ramos Batu	North Sumatera
		<i>-</i>					

No.	Acc.No.	Accession Name	Origin	No.	Acc.No.	Accession Name	Origin		
34	20746	Mama Laka	East Nusa Tenggara	130	12564	Kodok Putih	Tanah Datar, West		
35	20759	Wajo Kuning	East Nusa Tenggara	130	12304	Kodok Futili	Sumatera		
36	20765	Sera	East Nusa Tenggara	121	12722	Cempo Abang	C:1 W4:		
37	20766	Keakubi	East Nusa Tenggara	131	12723	ner	Cirebon, West java		
88	20819	Sehan	North Maluku	100	12102	T	Ketapang, West		
39	20848	Ardas	North Sulawesi	132	13102	Teratai	Kalimantan		
00	20851	Apel	North Sulawesi	133	15005	Banda	South Sulawesi		
		Ndangan		134	3571	Betonan	East Java		
91	20878	Cantik 1	South Sulawesi	134	3371	Betonan	50 Kota, West		
		Lokal buntu		135	4065	Lumut	Sumatera		
92	20906		South Sulawesi			C4:			
	20000	Sangala 2	G 41 G 1	136	4087	Sunting	Tanah datar, West		
93	20908	Pare Pulunglia	South Sulawesi			Beringin	Sumatera		
94	20962	Cere Gelas	West Java	137	4117	Siak Simpur	Sambas, West		
95	20967	Kembang	West Java	157		-	Kalimantan		
, ,		Ading		138	4137	Bendang Bujur	Agam, West Sumatera		
96	20974	Limar	West Java	139	4139	Kuku Balam	Agam, West Sumatera		
7	20977	Sasak Jalan	East Kalimantan	1.40	4141	Sirandah	G 1 1- W 4 G- 4		
8	20982	Popot	East Kalimantan	140	4141	Tjogok	Solok, West Sumatera		
		Kembang		141	4153	Empat	Solok, West Sumatera		
9	21073	Singkan	East Kalimantan	142	4176	Padi Rasi	Aceh		
00	21074	Ketan Siam	East Kalimantan	143	4224	Djula Djuli A	Banyuwangi, East Jav		
01	21074	Uyun	Jambi	144	4225	Hoing	Banyuwangi, East Jav		
						•			
02	21116	Kwatik Tinggi	Jambi	145	4227	Makmur	Banyuwangi, East Jav		
.03	21119	Rumbai ayam	Jambi	146	4231	Revolusi	Banyuwangi, East Jav		
04	21120	Padi Rantau	Bengkulu	147	4240	Gropak Serung	Lumajang, East Java		
		Undik	Bengkuru	148	4242	Itun	Lumajang, East Java		
05	21123	Cinta Kasih	Bengkulu	149	4257	Nangka Bosok	Malang, East Java		
106	21124	Padi Bugis	Bengkulu	150	4260	Bengawan	Malang, East Java		
07	21126	Surya	Bengkulu	151	4268	Sijem	Malang, East Java		
80	21181	Beras merah	West Java	1.50	4205	-	Kota Waringin, Centr		
09	21183	Slereng	West Java	152	4285	Sampa kiring	Kalimantan		
110	6329A	Pae Laguh	South East Sulawesi	153	12287	Pelopor	Semarang, Central Jav		
111	10065	Ketan Jambruk	Bantul, Yogyakarta	154	12293	Cempo Slamet	Semarang, Central Jav		
112	10077	Sate Liko	Bantul, Yogyakarta	155	12302	Ketan Uis	Bandung, West Java		
113	10221	Pulu Bolong	Bone, South Sulawesi	156	12302	Loyang	Bandung, West Java		
113	10221	r ulu Bololig	•						
14	10479	Pare Solo	Kolaka, North	157	12353	Jerah	Cianjur, West java		
			Sulawesi	158	12354	Ketan Wangi	Tangerang, Banten		
15	10578	Pulut Tomene	South East Sulawesi	159	12366	Marus	Cianjur, West java		
16	15016	Horeg	Cirebon, West java	160	12372	Koneng Gundil	Cianjur, West java		
117	11720	Majair	Lampung, North Lampung	161	12563	Sirandah Lunto	Tanah datar, West Sumatera		
1.0	11721	V-1: '	Lampung, North	162	19625	Cisadane	Bogor, West Java		
18	11731	Kalimis	Lampung	163	19629	Semeru	Bogor, West Java		
		_	Lampung, Central	164	C1	IRBB7	IRRI		
19	11920	Termas	Lampung Lampung	165	C2	IR24	IRRI		
		DP (Dave Ital	Lampung	166	C2 C3	Conde	ICABIOGRAD		
20	12074	DR (Daya Itoh	Lampung			Kencana Bali			
21	11984	Rice) 4 Si Gudang	North Sumatera	167	C4	Acheana Ban	ICABIOGRAD		
122	12052	Cempo	Deli Serdang, North Sumatera	1	Amplifica	tion reactions we	re carried out in		
23	12122	Gata	Bogor, West Java			on volumes con			
24	12167	Ringgit	Tanjung Jabung, Jambi				•		
				0		Λ , 1.0 μ M each			
25	12276	Tampay	Semarang, Central Java	privi		ATP, dCTP, dG7			
26	12296	Nolo kario	Semarang, Central Java		of Taq	DNA Polyme	rase, 1X Taq		
27	12297	Lumbu	Semarang, Central Java			uffer and 2.5 mN			
28	12315	Sri Makmur	Bateng, Central java			was performed	· ·		
129	12341	Fajar	Garut West Java						
				Kese	arch The	ermal Cycler p	rogrammed as		

94°C; 35 cycles of 94°C for 1 min (denaturation), 50/55°C for 1 min (depending on optimal annealing temperature of each primer), and 72°C for 1 min (extension). One additional cycle of 10 min at 72°C was used for final extension. Amplified products were separated by electrophoresis in either 3% agarose gels run in 0.5X TBE or 8% polyacrylamide gel at 100 V (Dual Triple-Wide Mini-Vertical System, C.B.S. Scientific, CA, USA), visualized under UV light following addition of ethidium bromide using a gel documentation system (BioRad).

Table 2. List of BLB isolates/pathotypes used in this study

Isolates	Host	Province	Pathotype
Xoo1110	Ciherang	Cianjur,	VI
		West Java	
Xoo1122	Kuriak	Maninjau,	V
	Putiah	West	
		Sumatera	
Xoo1130	Kuriak	Maninjau,	XII
	Putiah	West	
		Sumatera	
	Xoo1110 Xoo1122	Xoo1110 Ciherang Xoo1122 Kuriak Putiah Xoo1130 Kuriak	Xoo1110 Ciherang Cianjur, West Java Xoo1122 Kuriak Maninjau, Putiah West Sumatera Xoo1130 Kuriak Maninjau, Putiah West

Table 3. List of SSR primers used in this study.

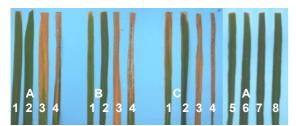
	Stt	ady.		
No.	Primer	Sequence	Repeat	size
		1	Motif	(bp)
1	RM20573	F:ggctattcctttcctctctc	(CT)10	197
		R:aatetteaegtgtgegtaactage	. ,	
2	RM20580	F:cgtcacttcaccagcctgtagcc	(CT)10	99
		R:gtccatcaatgcccatccatcc	. ,	
3	RM20582	F:agagegtegteetteaceatee	(TCT)7	83
		R:ggccaatacgacgatacattacacg	, ,	
4	RM20589	F:catgtatttgtgtgcacgtaccg	(AC)22	263
		R:acctttcttgggcctttcttgg		
5	RM20590	F:ttcgatgagcacctttccttgtcc	(AT)28	343
		R:gcctcgccgattcacttatgc	, ,	
6	RM20591	F:tcgtctgcgcgaatatttagagagg	(TGGA)6	195
		R:atctgcatcggagtcagcaacg		
7	RM20593	F:aaggtacacttgctctgacggtagc	(CT)12	315
		R:agacctcagtggcaaatcctacg		
8	RM20595	F:aacttcctttccaggctttcagc	(TA)10	169
		R:ttcactgagcctgaacacattgc		
9	RM20601	F:ggagtgaaactgaggctcctatcg	(TA)13	406
		R:tcgttctccctgcaagttaatgg		
10	RM20603	F:tacaaatcaacagccaccacagc	(CAA)8	101
		R:ccatttggaacagattggacttgg		
11	RM20608	F:ttcgatcagtcagatagtcacg	(GA)17	145
		R:tettgetteagtetgetaeace		
12	RM20612	F:tgtctctcgatacctcccatacc	(AG)13	152
		R:geceacetetettgteetatee		

Data Analysis.

The disease extent of rice germplasms was assessed and grouped based on their resistance using statistical analysis software program NTSYSpc 2.11p (Rohlf, 2005). Resistance or susceptibility was coded in a binary form of 1

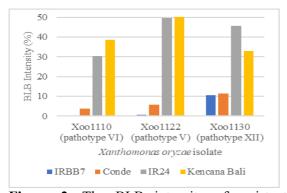
or 0, respectively. The Dice Coefficient (SIMQUAL) and UPGMA method (*Unweighted Pair Group Method Arithmetic*) were used to cluster the varieties and visualize their genetic relatedness to each other.

The bands of Xa7 allele were noted from the polymorphic band patterns of the PCR products. The bands of Xa7 allele were standardized using the amplified PCR products of IRBB7 and IR24 used as control. SSR analysis was conducted based on their allele size. The genetic distance was calculated using Dc implemented by Cavalli and Edwards (1967) in PowerMarker V3.23 (Liu and Muse, 2004). The germplasms were grouped based on their SSR profile using statistical analysis software program NTSYSpc 2.11p (Rohlf, 2005). The Dice Coefficient and UPGMA method used to cluster the varieties and visualize their genetic relatedness to each other. Tassel v.3.0 (Bradbury et al., 2007) was used to determine the association testing between SSR markers and BLB resistance. The P-value determined whether a OTL is associated with the marker and the R²-marker evaluated the magnitude of the QTL effects.

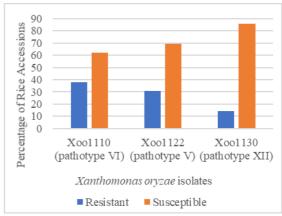

Results

Disease Assessment of Rice Germplasms.

BLB is a vascular disease that spreads through the xylem vessels. Lesions usually begin at the margin, a few centimeters from the tip, as water-soaked stripes. It can occur at any stages of the rice plants' growth. At the seedling stage, the symptoms first appeared as tiny water-soaked spots at the margin of the rice leaf blade. Then, it will enlarge and the rice plants turn yellow and wither. The symptoms of the disease at the seedling stage is known in local language (Bahasa Indonesia) as *kresek*.


The plants' reactions to pathogen infection varied. Symptoms such as pale green or grayish green patches on the leaves indicated infected germplasms. In the spots, oozing milky-white bacteria could be seen on the surface of the leaves in the morning. In resistant cultivars IRBB7 and Conde (Figure 1: leaf no. A1, A2, B1, B2, C1 and C2) and resistant germplasms (Figure 1: leaf no. 5, 6, 7, 8), the spots developed into a yellowish-white color on leaves with a wavy tip. On the other hand, in the susceptible cultivars Kencana Bali

and IR24 (Figure 1: leaf no. A3, A4, B3, B4, C3 and C4) lesions were observed in all parts of the infected leaves, accompanied by a color change to slightly white or grey, and the leaves became dry and died.


Figure 1. Lesions on leaves detected 14 days after inoculation with (A) Xoo1110, (B) Xoo1122, (C) Xoo1130. From left to right: Leaf no 1) IRBB7, 2) Conde, 3) Kencana Bali and 4) IR24, (5) Payak Tembakau (6) Padi Bugis, (7) Surya, and (8) Pare Puluglia.

The BLB intensity in resistant varieties (IRBB7 and Conde having the Xa7 resistance gene) against Xoo1110 (Pathotype VI) and Xoo1122 (Pathotype V) when measured as lesion size were less than 5%, whereas for the Xoo1130 (Pathotype XII), it was higher than 10%. It suggested that Xoo1130 was more virulent than the other two isolates/pathotypes and could overcome the Xa7 resistance gene in IRBB7 and Conde varieties. The BLB intensity in susceptible varieties, IR24 and Kencana Bali, were higher than 30% in terms of lesion size against the three BLB isolates/pathotypes tested. These two isolates showed a moderate susceptibility against the three BLB isolates/pathotypes tested (Figure 2).

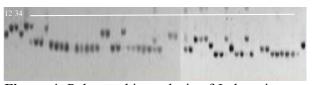
Figure 2. The BLB intensity of resistant controls (IRBB7 and Conde) and susceptible controls (IR24 and Kencana Bali) against the three isolates/pathotypes tested.

The BLB scores on 167 indigenous rice germplasms revealed that more than 68% rice accessions displayed a medium susceptibility (score 5) to high susceptibility (score 8) against the three BLB isolates/pathotypes tested (Suppl. 1). There were 54 (32.3%) rice accessions found to be resistant to Xoo1110 (Pathotype VI), 41 (24.5%) were resistant to Xoo1122 (pathotype V), and 22 (13.2%) were resistant to Xoo1130 (pathotype XII) (Figure 3). Payak Tembakau, Pare Pulunglia, Sate Liko, Pulu Bolong, Horeg, and Sijem cultivars were resistant to all three isolates/pathotypes tested (Table 4).

Figure 3. The percentages of resistant and susceptible Indonesian rice germplasms to the three isolates/pathotypes tested.

Table 4. The resistance profiles of Indonesian rice germplasms against the three isolates/pathotypes tested.

150	nates/pathotyp	es lesieu.
No. of	Xoo	
resistance	Isolates	Resistant Accessions
occurrence	/pathotypes	
	Xoo1110	Biduin, Abang, Terotel,
	/pathotype	Wuri Bura, Secangkir,
	VI	Jhapara, Tuma, Seratus
		Malam, Dular, Sibentar,
		Siremut, Buhbolon,
		Danau Atas, Poso,
		Baung, Banjar Sawan,
		Kail, Bonti, Putri
1		Manis, Keakubi, Ketan
1		Jambruk, Pare Solo,
		Pulut Tomene, Sri
		Makmur, Empat,
		Hoing, Makmur,
		Revolusi, Gropak
		Sarung, Nangka Bosok,
		Sampa Kiring, Pelopor,
		Cempo Slamet, Jerah,
		SiRandah Lunto,
		Semeru.


	Xoo1122	Putih Ampat Angkek,
	/pathotype V	Aluh Kuranji, Untup,
		Mayor, Randah Pala,
		Lalantik Bamban, Siam
		Parapuk, Sara Kasa,
		Pimpin, Si Pulo
		Angkola, Kuala Deli,
		Wajo Kuning, Ardas,
		Ndangan Cantik 1,
		Lokal Buntu Sangala 2,
		Cere Gelas, Uyun,
		Kwatik Tinggi, Padi
		Rantau Undik, Cempo.
	Xoo1130	Idi, Si Motung,
	/pathotype	Angkong, Kembang
	XII	Ading, Kembang
		Singkan, Pae Laguh,
		Kalimis.
	Xoo1110 +	Brown Gora, Lemo, Si
	Xoo1122	Pulo Mandailing, Cinta
		Kasih, Majair, Nolo
2		Kario, Lumbu, Sera
2	Xoo1110 +	SiRuguek, Cisadane
	Xoo1130	
	Xoo1122 +	Goter, Surya, Daya Itoh
	Xoo1130	Rice 4, Padi Bugis, Si
		Gudang
	Xoo1110 +	Payak Tembakau, Pare
3	Xoo1122 +	Pulunglia, Sate Liko,
	Xoo1130	Pulu Bolong, Horeg,
		Sijem

Cluster analysis calculated from BLB scoring (resistant: score 1-4 and susceptible: score 5-9) was constructed. A cutoff value of 0.65 was used for genetic similarity among all varieties as the threshold for UPGMA clustering, which resulted in four major groups. Group 1 represented accessions displaying resistance to all three BLB isolates/pathotypes. This group included the IRBB7 and Conde varieties and consisted of 10 accessions (6%): Horeg, Pare Pulunglia, Sijem, Sate Liko, Pulu Bolong, Payak Tembakau, Padi Bugis, Goter, Surya, and Daya Itoh Rice 4. Group 2 represented accessions resistant to only one BLB isolate/pathotype (Xoo1130), Group represented accessions susceptible to all three BLB isolates/pathotypes, and Group represented accessions resistant to one or two BLB isolates/pathotypes (Suppl.2).

Molecular Marker Analysis.

Eight out of twelve SSRs used for genotyping showed good polymorphism and were able to be measured in 56 Indonesian rice

germplasms (Figure 4). Polymorphic analysis revealed the genetic variations that exist, namely 31 alleles with an average of four alleles per locus - the range was two (RM20595 and RM20603) to six alleles (RM20590). Polymorphism Information Content (PIC) values averaged at 0.34 and ranged from a low of 0.06 (RM20573) to a high of 0.53 (RM20582). RM20573 showed highest frequency allele. RM20612 showed the lowest frequency allele (Table 5). The presence of 31 alleles in the 56 accessions indicated a low genetic diversity within the BLB Xa7 resistance gene locus and a low PIC value.

Figure 4. Polymorphic analysis of Indonesian rice germplasms using SSR marker RM20582. Lane 1: IRBB7, lane 2: IR64, lane 3: IR24, lane 4-53 Indonesian rice germplasms.

Table 5. Statistical summary of molecular marker analysis of 56 rice accessions

Size			
Range	Allele	Allele	PIC
(bp)	Number	Frequency	
197 - 310	3	0.9649	0.0672
80 - 83	4	0.5614	0.5320
235 - 600	5	0.7895	0.3393
280 - 400	6	0.7895	0.3545
190 - 195	4	0.5965	0.4972
50 - 169	2	0.8246	0.2475
101 - 105	2	0.8772	0.1922
152 - 160	5	0.4561	0.5118
	4	0.7324	0.3427
	Range (bp) 197 - 310 80 - 83 235 - 600 280 - 400 190 - 195 50 - 169 101 - 105	Range (bp) Allele Number 197 - 310 3 80 - 83 4 235 - 600 5 280 - 400 6 190 - 195 4 50 - 169 2 101 - 105 2	Range (bp) Allele Number Allele Frequency 197 - 310 3 0.9649 80 - 83 4 0.5614 235 - 600 5 0.7895 280 - 400 6 0.7895 190 - 195 4 0.5965 50 - 169 2 0.8246 101 - 105 2 0.8772 152 - 160 5 0.4561

Cluster analysis was performed on similarity coefficient matrices calculated from the molecular markers to generate a dendrogram. When a cutoff value of 0.48 was used for genetic similarity among all varieties as the threshold for UPGMA clustering, two major groups were observed. Group 1 represented susceptible rice varieties consisting of 44 accessions and included the IR24 variety. Group 2 represented the resistant varieties, which included the IRBB7 and Conde varieties, and consisted of Sate Liko, Pulu Bolong, Horeg, Sijem, Majair, Daya Itoh Rice 4, Lumbu, Nolokario, Si Gudang and Cempo varieties (Suppl. 3). The dendrogram suggested that there was no geographical segregation of the rice accessions based on the obtained data.

Disease assessment of 167 rice germplasms three **BLB** against isolates/pathotypes analyzed using scoring (Table 4), UPGMA cluster analysis (Suppl. 2), and molecular marker analysis (Suppl. 3) revealed that three germplasms displayed a consistent resistance profile: Sate Liko, Horeg and Sijem. A summary of results for those germplasms can be seen in Figure 5.

	RM20582	RM20589	RM20590	RM20595	RM20603			
SSRs								
cM	106,1	106,3	106,4	106,6	106,9	2		
BAC Clone	B1472F02	P0778G11		B115	B1153E06			
Function	Serine/ Arginine		/POZ nain		osyl olase			
Accession/						Xoo	Xoo	Xoo
Xoo						1110	1122	1130
Sate Liko	80	235	280	50	105	R	R	R
Horeg	80	500	400	50	101	R	MR	R
Sijem	70	235	280	169	105	MR	MR	R
IRBB7	80	600	343	50	101	R	R	R
IR24	80	500	280	169	105	MS	MS	MS

Figure 5. Genotyping of the region containing *Xa7* gene for each rice accession displaying consistent resistance profiles. SSRs = simple sequence repeats, R=resistant, MR=Medium Resistance and MS=Medium Susceptible. Centimorgan (cM) refers to relative distances along the Nipponbare BAC.

Association Analysis.

Association analysis performed using a General linear model has identified marker-trait associations (P < 0.05) of BLB resistance (Xoo1130/pathotype XII). Evaluation of six out of eight markers revealed a significant association between BLB resistance and markers (Table 6).

Table 6. Association (R²) of SSR markers with resistance to BLB

	SSR	Position		
Trait	Marker ^a	(Mb)	P	\mathbb{R}^{2b}
BLB	RM20582	27.91	0.0141	0.2708
Resistant	RM20589	27.93	0.0004	0.4820
	RM20590	28.01	0.0000	0.6211
	RM20595	28.08	0.0097	0.2093
	RM20603	28.15	0.0029	0.2668
	RM20612	28.29	0.0065	0.4113

^a Only SSR markers with a significant marker-trait association are reported

Discussion

Natural selection has generated landraces with highly diverse quality, quantity and disease resistance traits-controlling loci. It is important to identify and maintain polymorphisms to broaden the genetic base of commercially cultivated varieties and to reduce pathogen pressure (Das *et al.*, 2014). Assessing diversity from large germplasm collections pose significant challenges, therefore this study concentrated on a small group of representative accessions before extending to a broader range of varieties.

Previous studies mentioned that xa5, Xa21, and Xa7 resistance genes are effective against the majority of the *Xoo* isolates/pathotypes in Indonesia. (Fatimah et al., 2014; Tasliah et al., 2013; Hifni and Kardin, 1998). Hifni and Kardin (1998) reported that based on IRRI differential varieties, the population of Xoo isolates of pathotypes V and VI are the dominant pathotypes in Indonesia. Pathotype V could not overcome rice varieties with xa5, Xa7, and Xa21 resistance genes, whereas pathotype VI could not overcome rice varieties with xa5 and Xa7 resistance genes. Pathotype XII was found to be the most virulent Xoo isolate and could overcome the rice varieties with more than ten resistance genes, but fortunately the population of Xoo isolates with pathotype XII is relatively low (Hifni and Kardin, 1998). However, in recent years pathotype XII was the most dominant pathotype found in 15 out of 22 districts in Central Java Province (Yuliani et al., 2018) and several rice growing areas in South Sulawesi showed a shift to a larger proportion of pathotype XII (Asysyuura et al., 2017).

Looking at 165 rice accessions and two resistant control varieties having resistance gene (IRBB7 and Conde varieties), the results of this study found that Xoo1130 (pathotype XII) was the most virulent compared to Xoo1110 (Pathotype VI) and Xoo1122 (pathotype V) (Figure Implications of this study are that potentially, pathotypes V and VI could be used for selection of breeding lines with three resistance genes (xa5, Xa7 and Xa21), while pathotype XII could be used to evaluate rice germplasm collection as a new source of resistance gene against Xoo.

The disease assessment of Indonesian rice germplasms by screening with three BLB

 $^{{}^{\}mathrm{b}}\,\mathrm{R}^2$ indicates the percentage of the total variation explained

isolates/pathotypes and genotyping using SSR primer linked to *Xa7* resistance gene revealed three out of 167 accessions that displayed a consistent resistant profile, i.e: Sate Liko, Horeg, and Sijem. It indicated that these three rice germplasms with a high degree of resistance could be a new source of resistance gene against BLB disease and can potentially be used to diversify the genetic base of core breeding sets.

Analyzing phenotype-genotype the association after an actual disease inoculation is a prerequisite for confirming BLB resistance with allele identification. Fine mapping of Xa7 previously resistance gene has been constructed (Chen et al., 2008; Zhang et al., 2009). The Xa7 gene is located in an approximately 200-kb segment subtelomeric region of chromosome 6 (Zhang et al., 2009). Several candidate genes that have been identified include BTB/POZ and Nramp6, known to be involved in plant resistance (Chen et al., 2008). Those genes are located within the 84 kb region comprising the SNPs detected in GWAS (Dilla-Ermita et al., 2017).

In this study, among the six markers evaluated in Indonesian rice germplasms, two markers (RM20589 and RM20590) revealed a association with isolate Xoo1130 (pathotype XII) (Table 6), indicating that RM20589 and RM20590 were the closest markers to the Xa7 resistance gene. These primers were located on BAC clone P0778G11 of Loc Os06g46240 in region 28,007,285-28,017,490 bp (10.2 kb) on rice plant genome. This region is known as the BTB/POZ domain-containing protein, putative, expressed (MSU Rice Genome Annotation Project). These results are similar to an earlier study (Fatimah et al. 2018) that screened BC_{1:2}F₂ individuals with 35 primers and revealed the significance of primer Xa7LD37 with Xa7 resistance gene. This primer was located between primer RM20589 and RM20590.

These results demonstrated the application of SSR primers in elucidating resistance to BLB in Indonesian rice germplasms that would enable discovery of significant SSR markers for marker-assisted selection. Efficient tracking of *Xa7* genes in the breeding pipeline provides breeders an insight that it is feasible to combine multiple genes (gene pyramiding) having complementary resistance spectra into a single plant genotype. This approach can

provide a broad-spectrum of resistance that ensures maintenance of durability of Xa genes deployed in the field. The feasibility of this approach was demonstrated by Fatimah $et\ al.$ (2015) where gene pyramiding on three BLB resistant genes xa5, Xa7 and Xa21 from Angke, Conde, and IRBB21 varieties into Ciherang and Inpari 13 elite varieties were performed and combined in a single BLB resistant gene Xa4 background.

In conclusion, the majority of the indigenous Indonesian rice germplasms were susceptible the three BLB to isolates/pathotypes tested. Sate Liko from Bantul, Yogyakarta, Horeg from Cirebon, West Java and Sijem from Malang, East Java showed consistent resistance based on BLB evaluation in greenhouse using isolates/pathotypes tested, UPGMA analysis, and genotyping using SSR markers linked to Xa7 resistance gene. For future studies, these indigenous rice germplasms are potential donors that can confer resistance to multiple pathotypes and therefore are useful to be used in breeding and improvement program for BLB resistant-varieties in Indonesia.

Acknowledgements

This work was financially supported by the 16th Indonesian Toray Science Foundation grant.

References

Adhikari, T.B., Cruz, C.M.W., Zhang, Q, Nelson, R.J., Skinner, D.Z., Mew, T.W., & Leach, J.E. (1995) Genetic diversity of *Xanthomonas oryzae* pv. *oryzae* in Asia. *Applied and Environmental Microbiology*, 61:966–971.

Asysyuura, Nawangsih, A.A., Mutaqin, K.H., Sudir. (2017). Identifikasi patotipe *Xanthomonas oryzae* pv. *oryzae* dari tanaman padi di Sulawesi Selatan. *Jurnal Fitopatologi Indonesia*, 13(3): 73–80. http://doi.org/cmk7.

Bradbury, P.J. *et al.* (2007). TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics* 23:2633-2635.

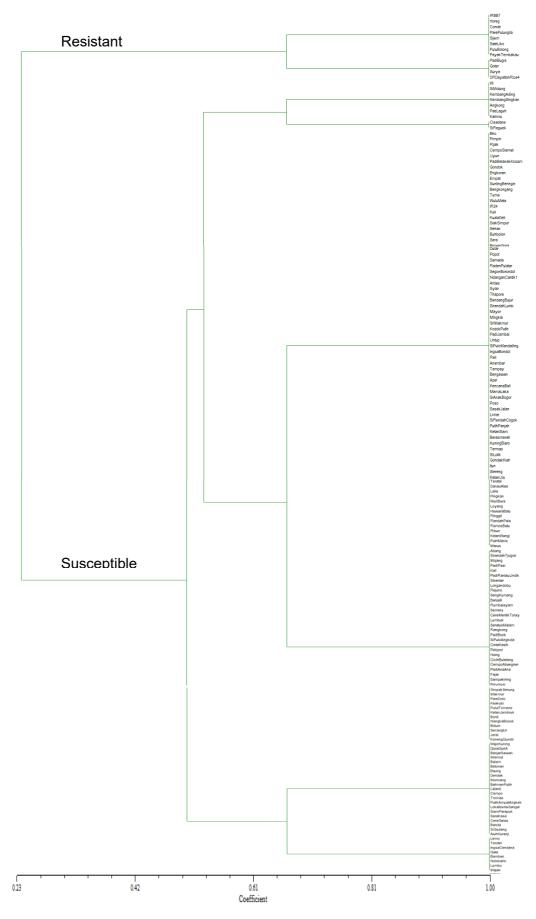
Cavalli-Sforza and Edwards. (1967). Phylogenetic analysis. Models and estimation procedures. *The American Journal of Human Genetics*, 19(3):233-257.

Chaudry, R.C. (1996). Standard evaluation system for rice. Genetic Res. 4th Edition, *Cent. Intl. Rice Res. Instit.* Manila, Philippines. pp. 52.

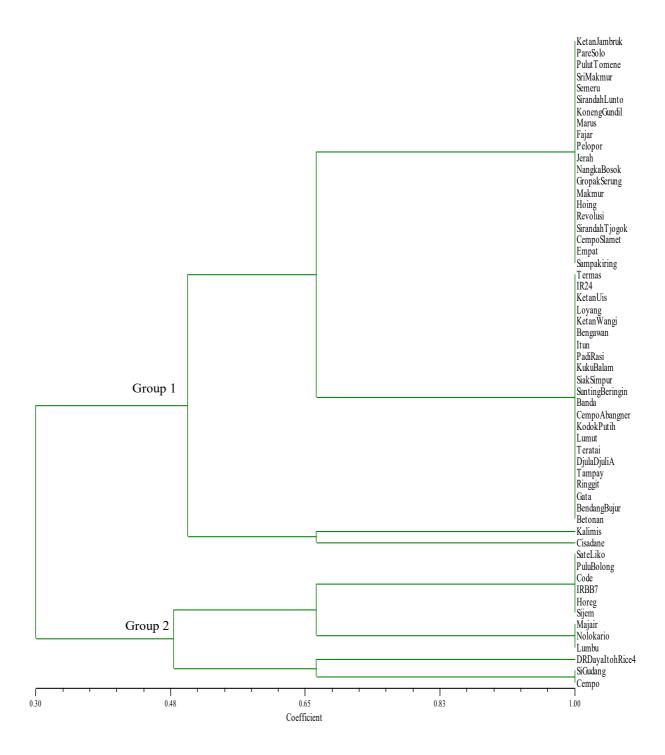
- Chen, S., Huang, Z., Zeng, L., Yang, J., Liu, Q., & Zhu, X. (2008). High-resolution mapping and gene prediction of *Xanthomonas oryzae* pv. *oryzae* resistance gene *Xa7*. *Molecular Breeding* 22:433–441.
- Cruz, V. C.M., Bai, J., Ona, L., Leung, H., Nelson, R.J., Mew, T.W., & Leach J.E. (2000). Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proceedings of the National Academy of Sciences, 97:13500-13505.
- Das, B., Sengupta, S., Prasad, M., & Ghose, T. K. (2014). Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces. *BMC Genet 15*, 82. https://doi.org/10.1186/1471-2156-15-82.
- Dellaporta, S.L., Wood, J., & Hicks, J.B. (1983). A plant DNA minipreparation: version II. *Plant Molecular Biology Reporter*, 1: 19-21.
- Dilla-Ermita, C.J., Tandayu, E., Juanillas, V.M., Detras, J., Lozada, D.N., Dwiyanti, M.S., Cruz, C.V., Mbanjo, E.G.N., Ardales, E., Diaz, M.G., Mendioro, M., Thomson, M.J., & Kretzschmar, T. (2017). Genome-wide association analysis tracks bacterial leaf blight resistance loci in rice diverse germplasm. *Rice*, 10(8):1-17. DOI 10.1186/s12284-017-0147-4.
- Fatimah, Priyatno, T.P., Fadlillah, S.H., Hermanto, Baroya, M., Mahrup, Wawan, Sasongko, D., Suryadi, Y., & Kadir, T.S. (2014). Isolation and disease assessment of *Xanthomonas oryzae* pv. *oryzae* from Java Island and pathogenic assay on near isogenic lines with different resistant genes. *Jurnal Biologi Indonesia*, 10(2):243-252.
- Fatimah, Prasetiyono, J., Priyatno, T.P., Yunus, M., Suhartini, T., Ridwan, I., Baroya, M. (2015). Analisis molekuler piramida gen *Xa* pada progeni padi Varietas Ciherang dan Inpari 13. *Jurnal Biologi Indonesia*, *11*(1):109-119.
- Fatimah, Prasetiyono, J, Polosoro, A. & Baroya, M. (2018). Molecular detection of resistance to bacterial leaf blight on Indonesian rice conde variety. *Annales Bogoriensis*, 22(1):27-34.
- Hifni, H.R. and Kardin, M.K. (1998). Pengelompokan isolat *Xanthomonas oryzae* pv. *oryzae* dengan menggunakan galur isogenik padi IRRI. *Hayati Journal of Biosciensces*, 5(3): 66-72.
- Kauffman, H.E., Reddy, A.P.K., Hsieh, S.P.Y., Merca, S.D. (1973). An improved technique

- for evaluating resistance of rice varieties to Xanthomonas oryzae pv. oryzae. Plant Diseases. Rep, 57: 537-541.
- Liu, K., & Muse, S. (2004) PowerMarker: new genetic data analysis software. Version 3.0. http://www.powermarker.net.
- Neelam, K., Mahajan, R., Gupta, V., Bhatia, D., Gill, B.K., Komal, R. Lore, J.S., Mangat, G.S., and Singh, K. (2020). High-resolution genetic mapping of a novel bacterial blight resistance gene *xa-45*(t) identified from *Oryza glaberrima* and transferred to *Oryza sativa*. *Theoretical Applied Genetics*, *133*(3):689-705. doi: 10.1007/s00122-019-03501-2.
- Ogawa, T., Yamamoto, T. Kush, G.S., & Mew, T.W. (1991). Breeding of near isogenic lines of rice with single gene for resistance to bacterial blight pathogen (*Xanthomonas campestris* pv. oryzae). Japanese Journal of Breeding, 41:523-529.
- Rohlf, F. J. (2005). NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.2. Exeter Software: Setauket, NY.38p.Dc.
- Sidhu, G.S., Kush, G.S.. & Mew. T.W. (1978). Genetic analysis of bacterial leaf blight resistance in seventy-four cultivars of rice, *Oryza sativa* L. *Theoretical Applied Genetics*, 53:105-111.
- Syam, M., & Hermanto. (1995). Rice production technology: supporting sustainable rice self-sufficient in Indonesia. Central Research Institute for Food Crops. Agency for Agricultural Research and Development. Bogor. Indonesia. 62 p.
- Tasliah, Mahrup, & Prasetiyono. J. (2013). Identifikasi molekuler hawar daun bakteri (*Xanthomonas oryzae* pv. *oryzae*) dan uji patogenisitasnya pada galur-galur padi isogenic. Jurnal Agrobiogen, 9(2):49-57.
- Yuliani, D., Rohaeni, W.R. Sudir. (2018). Evaluasi ketahanan galur *International Rice Bacterial Blight* terhadap hawar daun bakteri dan identifikasi patotipe *Xanthomonas oryzae* pv. *oryzae* Provinsi Jawa Tengah berdasarkan Galur IRBB. *Jurnal Ilmu Pertanian Indonesia*, 23(1): 52-59. DOI: 10.18343/jipi.23.1.52
- Zhang, Y., Wang, J., Pan, J., Gu, Z., Chen, X., Jin, Y., Liu, F., Zhang, H., & Ma, B. (2009) Identification and molecular mapping of the rice bacterial blight resistance gene allelic to Xa7 from an elite restorer line Zhenhui 084. European Journal of Plant Pathology, 125(2):235–244.

Supplement


Table 1. BLB Scoring of rice accession against BLB isolates used in this study.

No.	Accession		Xoo 1110		Koo 122		Xoo 1130	No.	Accession		Xoo 110		Too 122		Xoo 1130
1,0.	Name	В	Cat.	В	Cat	В	Cat.	110.	Name	В	Cat.	В	Cat	В	Cat.
	Putih								Segon						
1	Ampat							36	Borondol	5	MS	5	MS	5	MS
-	Angkek	5	MS	4	MR	5	MS	37	Mojang	5	MS	5	MS	6	S
2	Reli	6	S	5	MS	5	MS	38	Rangkong	5	MS	5	MS	5	MS
	Seng	O	5	3	1115	5	IVID	30	Cere		1415	,	1115	5	1115
3	Kumang	5	MS	5	MS	5	MS	39	Mentik/						
4	Mingkai	6	S	5	MS	5	MS	37	Toray	S	S	5	MS	5	MS
5	Rijah	6	S	5	MS	6	S		Hawara	S	5	3	IVIS	5	WIS
3	Aluh	O	3	5	MIS	O	S	40	Batu	5	MS	5	MS	5	MS
6	Kuranji	6	S	4	MR	5	MS	41	Muncang	5	MS	6	S	6	S
		O	S	4	IVIX	3	IVIS	42	Gondok		S	5	MS		S
7	Kuning	5	MS	5	MS	5	MS	42		6 5	MS	6		6 6	S S
	Biaro	3	MS	3	MS	3	MS	43	Laila	3	MS	0	S	O	3
8	Gondak	~	MC	_	MC	_) (C	4.4	Padi						
	Kiah	5	MS	5	MS	5	MS	44	Belanak	_	1.40	_) (C	_	a
9	Si Rendah		C	_) (C	_	3.40		Kosambi	5	MS	5	MS	6	S
4.0	Cogok	6	S	5	MS	5	MS	45	Padi	_	3.50	_	3.50	_	
10	Tromas	5	MS	5	MS	5	MS		Jambai	5	MS	5	MS	5	MS
11	Goter	5	MS	4	MR	4	MR	46	Terotel	4	MR	6	S	5	MS
12	Untup	5	MS	4	MR	5	MS	47	Wuri Bura	4	MR	5	MS	5	MS
13	Mayor	6	S	4	MR	5	MS	48	Samada	5	MS	5	MS	5	MS
14	Baliman							49	Dendak	5	MS	5	MS	5	MS
	Putih	5	MS	5	MS	5	MS	50	Lumbuk	5	MS	5	MS	5	MS
15	Biduin	4	MR	5	MS	5	MS	51	Secangkir	3	R	5	MS	5	MS
16	Randah							52	Jhapara	2	R	5	MS	5	MS
10	Pala	6	S	4	MR	6	S	53	Tuma	2	R	5	MS	5	MS
17	Lalantik							54	Seratus						
1 /	Bamban	5	MS	4	MR	5	MS	34	Malam	2	R	5	MS	5	MS
1.0	Raden								Brown						
18	Pulatar	5	MS	5	MS	5	MS	55	Gora	4	MR	4	MR	5	MS
1.0	Siam							56	Dular	4	MR	5	MS	5	MS
19	Parapuk	6	S	4	MR	5	MS	57	Sibentar	3	R	5	MS	5	MS
20	Sara Kasa	5	MS	4	MR	5	MS	58	Siremut	4	MR	5	MS	5	MS
21	Pingkan	5	MS	5	MS	5	MS	59	Buhbolon	3	R	5	MS	5	MS
22	Pimpin	5	MS	4	MR	6	S	60	Danau Atas	2	R	6	S	5	MS
	Bengkonga	-	1115	•	1,111	Ü	J	61	Poso	2	R	5	MS	5	MS
23	ng	5	MS	5	MS	5	MS	62	Engkoran	5	MS	6	S	6	S
	Cicih	,	1115	3	1115	,	IVID	63	Baung	2	R	5	MS	5	MS
24	Buleleng	5	MS	5	MS	5	MS		Banjar	2	K	3	IVIS	5	WIS
25	Angkong	5	MS	5	MS	4	MR	64	Sawan	4	MR	6	S	6	S
26	Padi Book	5	MS	5	MS	5	MS	65	Kail	4	MR	5	MS	5	MS
20		5	IVIS	5	MIS	3	IVIS	03		4	IVIIX	3	MIS	5	MIS
27	Longandob	5	MC	5	MC	_	MC	66	Payak Tambahan	2	D	ъ	D	4	MD
	u D 1: A	5	MS	5	MS	5	MS	67	Tembakau	3	R	R	R	4	MR
28	Padi Ana-	_	1.40	_) (C	~	3.40	67	Ribun	5	MS	5	MS	5	MS
	Ana	5	MS	5	MS	5	MS	68	Bonti	4	MR	5	MS	5	MS
29	Anambar	5	MS	5	MS	5	MS	69	Idi	5	MS	5	MS	4	MR
30	Wulu Mata	5	MS	5	MS	5	MS	70	Syair	5	MS	5	MS	5	MS
31	Ingsa							71	Rangkoh	5	MS	5	MS	5	MS
<i>J</i> 1	Cendana	5	MS	5	MS	5	MS	72	Si Reguek	4	MR	5	MS	4	MR
32	Ingsa							73	Putih						
	Bondol	5	MS	5	MS	5	MS		Panjah	5	MS	5	MS	5	MS
33	Banja Ili	5	MS	5	MS	5	MS	74	Bho	5	MS	5	MS	5	MS
34	Rejuno	5	MS	5	MS	5	MS	75	Lemo	4	MR	4	MR	5	MS
34															
35	Abang	4	MR	5	MS	5	MS	76	Si Motung	5	MS	5	MS	4	MR


No.	Accession		Xoo 110		Koo 122		Xoo 130	No.	Accession		Xoo 110		.00 122		Xoo 1130	
110.	Name	В	Cat.	В	Cat	В	В	110.	Name	В	Cat.	В	Cat	В	Cat.	
77	Si Anak							113	Pulu	4	MR	4	MR	4	MR	
78	Bogor Si Lotik	5 5	MS MS	5 5	MS MS	5 5	MS MS	114	Bolong Pare Solo	4	MR	5	MS	5	MS	
79	Si Pulo							115	Pulut	3	R	5	MS	5	MS	
	Angkola Si Pulo	5	MS	4	MR	5	MS	116	Tomene Horeg	2	R	4	MR	3	R	
80	Manda							117	Majair	3	R	4	MR	5	MS	
	iling	4	MR	4	MR	5	MS	118	Kalimis	5	MS	5	MS	4	MR	
81	Putri Manis	4	MR	5	MS	5	MS	119	Termas	6	S	5	MS	5	MS	
82	Kuala Deli Ramos	5	MS	4	MR	5	MS	120	Daya Itoh Rice 4	6	S	2	R	4	MR	
83	Batu	5	MS	5	MS	5	MS	121	Si Gudang	5	MS	4	MR	4	MR	
	Mama	5	IVIS	5	IVIS	5	WIS	122	Cempo	5	MS	4	MR	5	MS	
84	Laka	5	MS	5	MS	5	MS	123	Gata	5	MS	5	MS	5	MS	
	Wajo	5	IVIS	3	IVIS	5	IVIS	124	Ringgit	5	MS	5	MS	5	MS	
85	Kuning	5	MS	4	MR	5	MS	125	Tampay	5	MS	5	MS	5	MS	
86	Sera	4	MR	4	MR	5	MS	126	Nolo kario	4	MR	3	R	5	MS	
87	Keakubi	3	R	5	MS	5	MS	127	Lumbu	4	MR	3	R	5	MS	
88	Sehan	5	MS	5	MS	5	MS		Sri	7						
89	Ardas	5	MS	4	MR	5	MS	128	Makmur	4	MR	5	MS	5	MS	
90	Ardas	5	MS	5	MS	5	MS	129	Fajar	5	MS	5	MS	5	MS	
91	Ndangan Cantik 1	5	MS	4	MR	5	MS	130	Kodok Putih	5	MS	5	MS	5	MS	
	Lokal	3	IVIS	4	MIK	5	MS	121	Cempo	_	3.60	_	3.60	_	3.60	
92	buntu							131	Abang ner	5	MS	5	MS	5	MS	
	Sangala 2	5	MS	3	R	5	MS	132	Teratai	5	MS	5	MS	6	S	
	Pare							133	Banda	5	MS	5	MS	5	MS	
93	Pulunglia	4	MR	3	R	4	MR	134	Betonan	6	S	5	MS	6	S	
94	Cere Gelas	5	MS	4	MR	5	MS	135	Lumut	6	S	5	MS	6	S	
95	Kembang Ading	5	MS	5	MS	4	MR	136	Sunting Beringin	6	S	5	MS	5	MS	
96	Limar	5	MS	5	MS	5	MS		Siak							
97	Sasak Jalan	5	MS	5	MS	5	MS	137	Simpur	5	MS	5	MS	5	MS	
98	Popot	5	MS	5	MS	5	MS		Bendang							
99	Kembang	J		3		5		138	Bujur	5	MS	5	MS	5	MS	
22	Singkan	5	MS	5	MS	4	MR	139	Kuku	5	MS	5	MS	5	MS	
100	Ketan Siam	5	MS	5	MS	5	MS	139	Balam	5	IVIS	3	IVIS	5	WIS	
101	Uyun Kwatik	5	MS	4	MR	6	S	140	Sirandah Tjogok	5	MS	5	MS	6	S	
102	Tinggi	5	MS	4	MR	6	S	141	Empat	4	MR	5	MS	5	MS	
	Rumbai	5	IVIS	7	IVIIC	U	5	142	Padi Rasi	5	MS	5	MS	6	S	
103	ayam	5	MS	5	MS	5	MS	143	Djula Djuli	5	MS	5	MS	6	S	
104	Padi Pantau								A Haina							
104	Rantau	_	1.40	4) (D	~	MC	144	Hoing	4	MR	5	MS	5	MS	
	Undik	5	MS	4	MR	5	MS	145	Makmur	4	MR	5	MS	5	MS	
105	Cinta		1 (D) (D	_) (C	146	Revolusi	3	R	5	MS	5	MS	
106	Kasih	4	MR	4	MR	5	MS	147	Gropak	4	MR	5	MS	5	MS	
106	Padi Bugis	5	MS	4	MR	4	MR		Serung	_						
107	Surya Beras	5	MS	4	MR	4	MR	148	Itun Nangka	5	MS	5	MS	5	MS	
108	merah	5	MS	5	MS	5	MS	149	Bosok	4	MR	5	MS	5	MS	
109	Slereng	5	MS	5	MS	5	MS	150	Bengawan	5	MS	5	MS	5	MS	
110	Pae Laguh	5	MS	6	S	4	MR	151	Sijem	4	MR	4	MR	3	R	
111	Ketan Jambruk	4	MR	5	MS	5	MS	152	Sampa kiring	4	MR	5	MS	5	MS	
															MS	

No.	Accession Name	Xoo 1110		Xoo 1122		Xoo 1130		No.	Accession	Xoo 1110		Xoo 1122		Xoo 1130	
		В	Cat.	В	Cat	В	Cat.	. 110.	Name	В	Cat.	В	Cat	В	Cat.
154	Cempo Slamet	4	MR	5	MS	6	S	161	Sirandah Lunto	3	R	5	MS	5	MS
155	Ketan Uis	5	MS	5	MS	5	MS	162	Cisadane	3	R	5	MS	4	MR
156	Loyang	5	MS	5	MS	5	MS	163	Semeru	4	MR	5	MS	5	MS
157	Jerah	4	MR	5	MS	5	MS	164	IRBB7	1	HR	1	HR	3	R
158	Ketan Wangi	5	MS	5	MS	5	MS	165 166	IR24 Conde	5 1	MS HR	5 2	MS R	5 3	MS R
159	Marus	5	MS	5	MS	5	MS	167	Kencana						
160	Koneng Gundil	5	MS	5	MS	5	MS	167	Bali	5	MS	HS	HS	5	MS

Note: B: BLB Score: 1 – 9 (Resistant: 1 – 4 and Susceptible: 5- 9) Cat.: Category: HR: Highly Resistant; R: Resistant; MR: Medium Resistant, MS: Medium Susceptible, S: Susceptible; HS: Highly Susceptible

Figure 1. UPGMA Clustering analysis of 167 Indonesian rice germplasms based on their resistance to the three isolates/pathotypes tested.

Figure 2. UPGMA tree of 56 Indonesian rice accessions using eight *Xa7* resistance-gene-linked SSR markers on chromosome 6, clustered as two major groups. Group 1 represents the susceptible varieties as indicated by IR24 as the susceptible control (black box). Group 2 represents the resistant varieties indicated by IRBB7 and Conde.