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ABSTRACT 

Squamous cell lung carcinoma (SCC) is a form of non-small cell lung cancer that commonly arises in the primary airway. The 
development of SCC is closely linked to changes in squamous cells that line the airways, primarily caused by exposure to tobacco smoke. 
To gain insights into SCC, bioinformatics techniques have been employed to detect biomarkers and analyze gene expression patterns, 
utilizing data from the Cancer Genome Atlas (TCGA) database, which was preprocessed for analysis. By employing DESeq2, a 
differential gene expression analysis method, identified genes showed significant variations in expression between smoking and non-
smoking groups among the 11,530 genes examined. Notably, five genes, namely CT45A1, GCGR, TPTE, ABCC2 and PI16, were found 
to play a significant role in tumor development and were susceptible to under- or over-expression due to smoking. The majority of these 
genes were found to be underexpressed rather than overexpressed. These identified genes hold potential as biomarkers for tumor 
development and exhibit a strong correlation between smoking history and the development of SCC. However, a limitation encountered 
during this analysis was the unavailability of data from normal non-tumor patients, which could have facilitated a more comprehensive 
analysis of differential gene expression. Furthermore this research gives a deeper implementation regarding the molecular mechanisms and 
genomics underlying SCC development, identifies differentially expressed genes associated with SCC and smoking history and highlights 
potential biomarkers that warrant further investigation. 
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ABSTRAK 

Karsinoma sel skuamosa paru (SCC) adalah salah satu jenis kanker paru-paru sel non-kecil yang umumnya muncul di saluran udara 
utama. Perkembangan SCC erat kaitannya dengan perubahan pada sel skuamosa yang melapisi saluran udara, yang terutama disebabkan 
oleh paparan asap tembakau. Untuk memperoleh wawasan mengenai SCC, teknik bioinformatika telah digunakan untuk mendeteksi 
biomarker dan menganalisis pola ekspresi gen, dengan memanfaatkan data dari basis data Atlas Genom Kanker (TCGA) yang telah 
diproses sebelumnya untuk analisis. Dengan menggunakan DESeq2, metode analisis ekspresi gen diferensial, gen-gen yang diidentifikasi 
menunjukkan variasi signifikan dalam ekspresi antara kelompok perokok dan bukan perokok di antara 11.530 gen yang diperiksa. Secara 
khusus, lima gen, yaitu CT45A1, GCGR, TPTE, ABCC2 dan PI16, ditemukan berperan penting dalam perkembangan tumor dan rentan 
terhadap pengungkapan yang kurang atau lebih akibat merokok. Sebagian besar gen-gen ini ditemukan berkurang ekspresinya daripada 
meningkat. Gen-gen yang diidentifikasi ini memiliki potensi sebagai biomarker untuk perkembangan tumor dan menunjukkan korelasi 
yang kuat antara riwayat merokok dan perkembangan SCC. Namun, batasan yang dihadapi selama analisis ini adalah tidak tersedianya 
data dari pasien non-tumor normal, yang dapat memfasilitasi analisis ekspresi gen diferensial yang lebih komprehensif. Selain itu, 
penelitian ini memberikan implementasi yang lebih dalam mengenai mekanisme molekuler dan genomik yang mendasari perkembangan 
SCC, mengidentifikasi gen-gen yang diekspresikan secara diferensial yang terkait dengan SCC dan riwayat merokok, serta menyoroti 
biomarker potensial yang perlu diselidiki lebih lanjut. 

Kata Kunci: Karsinoma paru sel skuamosa, Riwayat merokok, Analisis ekspresi gen, Database, Biomarker 

INTRODUCTION 
Squamous Cell Lung Carcinoma 

Squamous cells are the thin, flat cells that line 
many human organs within the respiratory and 
digestive tracts, such as the lungs. Squamous cell 
carcinoma, or SCC of the lung, is sometimes 
referred to as squamous cell lung cancer. Squamous 
cell lung cancers frequently develop in the main 
airway, such as the left or right bronchus, or in the 
middle of the lung. This type of cell line is a non-
small cell lung cancer, or NSCLC. According to 
Sabbula and Anjum (2021), lung squamous cell 
carcinoma is the second most prevalent type of 
NSCLC, most notably in females. It affects 

approximately 400,000 people worldwide, with a 
majority being identified as current or heavy 
smokers (Cardona et al., 2020). 

The oncogenesis of SCC is known to be due to 
the squamous cells lining the airways undergoing 
change. Tobacco smoke, which contains more than 
300 hazardous substances and 40 possible 
carcinogens, is the main cause of cellular change 
(American Cancer Society, 2020). Keratinization 
and/or intercellular bridges are characteristics of 
transformed squamous cells, which frequently show 
a high level of mutation frequency. Keratinization 
is often followed by apoptosis: A process which 
ultimately leads to the progression of tumor in 

 

 

*Kontributor Utama 
*Diterima: 7 Juli 2023 - Diperbaiki: 11 Agustus 2023 - Disetujui: 2 Oktober 2023 

mailto:arli.parikesit@i3l.ac.id


292 

Berita Biologi 22(3) - Desember 2023 
 

 

 

 

 

patients with SCC (Park et al., 2017). 
 

Molecular Mechanism and Genomics of 
Squamous Cell Lung Carcinoma Development 

Lung squamous cell carcinoma frequently 
develops from the bronchial epithelium of larger 
and more central airways (basal cells), with most 
cases occurring in the center of the lung. It can be 
distinguished by the formation of squamous pearls, 
individual cell keratinization and intercellular 
bridges (Yeh et al., 2019). According to Zhu et al. 
(2020), once a malignant cell mass has become 
established, it must be able to cope with various 
environmental stresses in order to grow and spread 
to other parts of the body (metastasis). These 
environmental stresses include hypoxic stroma, 
immunological responses and hostile local cell 
types. Lung cancer cells have the ability to 
manipulate their environment, therefore allowing it 
to build resistance towards the environmental 
stresses. They can even use certain harmful impacts 
into signals that will help them grow, turning foes 
into allies. The metastasis of lung cancer is carried 
out by very complicated molecular mechanisms and 
pathways that are intimately linked to physiological 
processes of growth and recovery (Perlikos et al., 
2013). 

According to The Cancer Genome Atlas 
Research Network (2011), a high overall mutation 
rate of 8.1 mutations per megabase and noticeable 
genomic complexity are characteristics of lung 
squamous cell carcinoma (SQCCs). The somatic 
TP53 mutation is present in virtually all lung 
SQCCs, much like it is in high-grade serous 
ovarian cancer. The CDKN2A/RB1, NFE2L2/ 
KEAP1/ CUL3, PI3K/AKT, SOX2/TP63/NOTCH1 
and PI3K/AKT pathways were also often altered, 
indicating a common malfunction in cell cycle 
regulation, response to oxidative stress, apoptotic 
signaling, and/or squamous cell differentiation. In 
several instances, pathway changes grouped by 
expression-subtype, indicating that those subtypes 
had a biological basis (The Cancer Genome Atlas 
Research Network, 2012). 

 

Differential Gene Expression in Squamous 
Cell Lung Carcinoma 

Cancers are products of uncontrolled several 
genetic and epigenetic modifications, which can be 
induced by a variety of factors (Loiselle et al., 
2016). In recent years, high throughput gene 
expression has shown a huge potential in 
identifying molecular causes of lung 
carcinogenesis, including in the identification of 
biomarkers and gene expression profiles of many 
lung carcinoma types. 

A research conducted   by Shriwash   et al. 
(2019), identified differentially expressed genes in 

small and non-small cell lung cancer and found that 
the differentially expressed genes (DEGs) found in 
non-small-cell lung cancer were mainly responsible 
for mitotic nuclear and cell division, enriching 
KEGG pathway to convert between pentose and 
glucuronate, as well as increasing cytochrome p450 
and enriching gene ontology analysis to 
glucuronidate xenobiotic. Further testing also 
showed that 8 genes, including AGR2, ANK3, 
CSTA, FABP6, FGG, IL33, S100P and TRIM29 
are commonly down regulated DEGs in NSCLC, 
whereas the genes CHL1, CXCL1 and GUSBP8 are 
commonly upregulated DEGs in NSCLC. Knowing 
the state of these genes are essential to reach an 
agreement of which genes affect NSCLC, which 
would eventually be targets of management and 
treatment of lung cancer. 

The CHL1 gene is cell adhesion molecule L1 
like, which serves as a helicase protein in cell cycle, 
specifically in the interphase stage (Brooker and 
Berkowitz, 2014). Upregulation of this gene is 
known to promote metastasis and invasion in many 
types of cancers. On the other hand, CXCL1 is a 
cytokine responsible for angiogenesis, 
tumorigenesis, inflammation and arteriogenesis 
(Vries et al., 2014). Upregulation of CXCL1 results 
in a more aggressive tumor as tumorigenesis is 
promoted, along with enhanced angiogenesis of 
tumor in metastatic sites. This indicates that 
CXCL1 partly contributes to the aggressiveness of 
the cancer. 

Onco   Informatics    Background    Method    of 
Squamous Cell Lung Carcinoma 

The process of utilizing bioinformatics in 
oncology was done through the detection of 
biomarkers (Man et al., 2019). A potential lead as 
to the biomarkers are circular RNA that has been 
shown to prove of some diagnostic importance in 
detecting squamous cell lung carcinoma (LUSC) 
(Wang et al., 2020). 

Such data can be found in the Cancer Genome 
Atlas (TCGA): A cutting-edge cancer genomics 
program, characterizing 20,000 primary cancers of 
33 different types (National Cancer Institute, 2022). 
The program as a whole has amassed 2.5 petabytes 
of data, all available for public usage (The Cancer 
Genome Atlas (TCGA), 2017). The data available 
in the TCGA repository include clinical 
information (e.g. smoking history), molecular 
analyte data, as well as molecular characterization 
data. TCGA is included as a part of the Genome 
Data Commons (GDC) -a repository and cancer 
knowledge base comprising several cancer genome 
programs for research (NCI Genomic Data 
Commons, n.d.). The data derived from TCGA can 
then be subjected to analysis in R: A programming 
language purposed for statistical analysis. 
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Objective of Research 
The research aims to identify the relationship 

between smoking history and squamous cell lung 
cancer development. Therefore some hypotheses 
were proposed for this research, which would be no 
significant correlation were found between 
smoking history and development of squamous cell 
lung cancer development. And, there could be 
significant correlation between smoking history and 
the development of squamous cell lung carcinoma 

MATERIALS AND METHOD 
The methodology utilized was based on 

previous papers with detection of gene expressions 
through the steps of retrieving the data, processing 
the data, and creating a differential analysis from 
the expressions (Bernard and Agustriawan, 2019; 
Agustriawan et al., 2021; Ivan, Agustriawan et al., 
2021; Ivan, Patricia et al., 2021). 

Retrieval of Gene Expression and Clinical Data 
The first step was to retrieve the gene 

expressions of lung squamous cell carcinoma 
patients from the TCGA database (https:// 
www.cancer.gov/ccg/research/genome-sequencing/ 
tcga) -a cancer genomics program which contains 
data on 20,000 primary cancers as well as its 33 
different types (National Cancer Institute, 2022). 
The clinical data of the patients can also be 
extracted from the repository, providing two 
separate records of gene expressions and patient 
data. The TCGA assembler tool was utilized in this 
process to extract data and later conduct the data 
preprocessing stage. 

Data Preprocessing 
Preprocessing of data was required to conduct 

genomic analysis for a number of reasons. Firstly, 
the procured data needed to be compatible with the 
analysis tool. Secondly, upper-quartile 
normalization methods for gene expression were 
very liable to bias when a gene with high read 
counts was introduced, emphasizing the need of 
filtering. Finally, identifiers were required to 
calibrate the gene expression data to the clinical 
data (Rahman et al., 2015). 

Patients were referred to by their TCGA ID, 
wherein codes 01–09 were listed as tumorous 
patients while 10 and above were listed as normal 
patients (National Cancer Institute, n.d.). Hence, 
the extracted TCGA barcodes of the patients can be 
identified as either tumorous or normal according 
to a specific portion in the barcode. The barcode 
was also used to intersect the gene expression data 
with the clinical data, as they both use TCGA ID to 
refer to the same patients. The dataset was then 
split into smoking and non-smoking groups of both 
tumorous and normal patients. An R dataframe was 

constructed for each respective group. 

Matrix Construction of Gene Data 
The resulting data was then stored inside a 

matrix using the package DESeq2 available on R. 
Genes were internally normalized by the 
constructed object by dividing each sample by their 
mean. The differentially expressed genes were 
filtered as the following criteria: 

1. Over 50% of the samples exhibited 
expression in the selected gene. 

2. Original RNA sequencing data has been 
normalized via trimmed mean of M-values 
method. 

3. Thresholds of Log-fold change over 1.5 and 
false discovery rate or adjusted p-value of 
under 0.01 (Yao et al., 2019). 

 

Differential Gene Expression Analysis of 
Smoking Group 

Smoking group was subjected to differential 
gene expression analysis with the condition of 
interest being set to tumor development. The results 
were plotted using DESeq2’s inbuilt function 
plotMA: A plot purposed for base means and log 
fold changes. 

 

Differential Gene Expression Analysis of Tumor 
Development between Tumor and Normal 
Groups 

Another differential gene expression analysis 
was set for tumor development with the addition of 
smoking as a factor that accounts for variation. 
Smoking status was factored in for the purpose of 
the design. The following design formula was used: 

design = ~ smoking + tumor 

Overlapping of Abnormally Expressed Genes 
Genes found to be abnormally expressed in 

tumor development between tumor and normal 
groups were then overlapped with genes 
abnormally expressed in the tumor development of 
the smoking group. log 2 fold changes were set to 
two and three for both analyses, respectively, to 
select the most differentially expressed gene 
susceptible to smoke and implicated in tumor 
development. The genes were then sorted according 
to their log 2 fold change value. 

RESULT 
Distribution of Patient Data 

The collected genomic and clinical data was 
divided into smoking and non-smoking groups. 
Data availability could be seen in the appendix. 
Table 1 displays the distribution of patients in each 
group. 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Table 1. Distribution of patient data (Distribusi data pasien) 
 

Status Smoker Non-smoker 

Tumor 420 25 

Normal 102 0 

 

Differential Gene Expression Analysis between 
Tumor and Normal Patients in the Smoking 
Group 

Differential gene expression analysis was 
executed exclusively on smoking patients to 
discover aberrantly expressed genes in relation to 
tumor development. To achieve the most aberrant 

gene expressions from 11,530 genes, the log 2 fold 
change threshold was set to one. 1,052 genes were 
identified as underexpressed in smoking tumor 
patients, compared to a meager 98 overexpressed 
genes. The adjusted p-value threshold of the 
analysis was set to 0.01 to reduce instances of false 
detections of abnormally expressed genes. 

 

 

 
 

 
 

Figure 1. Differentially expressed genes including in smoking patients pertaining to tumor development. Log-
fold change threshold was set to one and the p-adjusted value threshold was set to 0.01. 
Abnormally expressed genes are colored in blue. (Gen yang diekspresikan secara diferensial, 
termasuk pada pasien perokok yang berkaitan dengan perkembangan tumor. Ambang perubahan 
lipat logaritmik diatur menjadi satu dan ambang nilai p yang disesuaikan menjadi 0,01. Gen yang 
diekspresikan secara abnormal diwarnai biru). 
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Figure 2. Volcano plot of log fold change and -log10(adjusted p-value). Absolute log fold change values above 1 are 
marked by the vertical red lines. Adjusted p-value above 0.01 is marked by the horizontal red line. (Plot 
gunung berapi dari perubahan lipat logaritmik dan -log10(nilai p yang disesuaikan). Nilai perubahan lipat 
logaritmik absolut di atas 1 ditandai dengan garis vertikal merah. Nilai p yang disesuaikan di atas 0,01 
ditandai dengan garis horizontal merah). 

 

Differential Gene Expression Analysis of Tumor 
Development between Smoking and Non-
smoking groups 

Differential gene expression analysis was 
executed to assess the distribution of over- and 
under-expressed genes accounting for the groups 

smoking and non-smoking. 174 genes were 
identified as differentially expressed, with an equal 
number of overexpressed and underexpressed genes 
(87 genes each). 

 

 

 

 
 

Figure 3. Differentially expressed genes including TP53, KRAS and MYC genes between smoking and non-smoking 
groups in tumor development. Gene expressions are plotted for the normalized mean number of overlapping 
reads (counts) in patient and log 2 fold change as X and Y axes respectively. Abnormally expressed genes are 
colored in blue. P-adjusted value is set to one. (Gen yang diekspresikan secara diferensial, termasuk gen TP53, 
KRAS dan MYC, antara kelompok perokok dan bukan perokok dalam perkembangan tumor. Ekspresi gen 
ditampilkan untuk jumlah rata-rata ternormalisasi dari bacaan (hitungan) yang tumpang tindih pada pasien, 
dengan log perubahan lipat 2 sebagai sumbu X dan Y masing-masing. Gen yang diekspresikan secara 
abnormal diwarnai biru. Nilai p yang disesuaikan diatur menjadi satu). 
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Figure 4. Volcano plot of log fold change and -log10(adjusted p-value). Log fold change values above 1 and 
under 1 are marked by the vertical red lines. Adjusted p-value above 0.01 is marked by the 
horizontal red line. (Plot Gunung Berapi dari perubahan lipat logaritmik dan -log10(nilai p yang 
disesuaikan). Nilai perubahan lipat logaritmik di atas 1 dan di bawah 1 ditandai dengan garis 
merah vertikal. Nilai p yang disesuaikan di atas 0,01 ditandai dengan garis merah horizontal). 

 

Smoking-Susceptible Tumor-causing genes 

 

Figure 5. Venn diagram for the number of smoking-susceptible and tumor-causing genes along with their 
overlap. (Diagram Venn untuk jumlah gen yang rentan terhadap merokok dan gen penyebab tumor 
beserta tumpang tindihnya). 

 

Overlapping of Genes Susceptible to Smoking 
History and Involved in Tumor Development 

Genes identified as abnormally expressed in 
the previous two analyses were then overlapped to 
implicate tumor-inducing smoke-susceptible genes. 
A total of 33 genes were initially identified for their 

involvement in tumor development and 
susceptibility to smoking. However, for the purpose 
of comprehensive analyses of the most 
differentially expressed genes, the results were 
filtered down to five by introducing an absolute log 
fold change threshold value of 2. 

702 Genes 33 124 Genes 
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Table 2. Differentially expressed genes involved in tumor development and susceptible to smoking. Absolute 
log 2 fold change minimum value was set to 2 for tumor involvement analysis (Figure 1) and 
smoking susceptibility analysis (Figure 3). (Gen yang diekspresikan secara berbeda yang terlibat 
dalam perkembangan tumor dan rentan terhadap merokok. Nilai mutlak minimum perubahan 2 kali 
lipat log ditetapkan menjadi 3 untuk analisis keterlibatan tumor (Gambar 1) dan 3 untuk analisis 
kerentanan merokok (Gambar 3)). 

 

Gene Base Mean Log 2 Fold 
Change (LFC) 

Standard Error 
of LFC 

Wald Test Value Adjusted 
P-value 

CT45A1 279.92 -5.02 0.95 -5.31 9.27e-5 

GCGR 14.09 -2.87 0.60 -4.75 6.87e-4 

TPTE 10.41 -2.84 0.67 -4.27 3.31e-3 

ABCC2 152.12 -2.81 0.50 -5.61 2.56e-5 

PI16 15.18 2.06 0.45 4.55 1.41e-3 
 

Table 2 shows the found genes along with their 
LFC values, with CT45A1, GCGR, TPTE and 

ABCC2 being all underexpressed and PI16 being 
overexpressed. 

 

 

Figure 6. Scatter plot of log 2 fold change vs. Wald test value of genes. The five implicated genes are colored 
in blue. (Plot sebar perubahan log 2 kali lipat vs nilai uji gen Wald. Lima gen yang terlibat 
diwarnai dengan warna biru). 

 

Figure 6 plots gene expressions based on their 
Wald test value and log 2 fold change. Wald test 
value is utilized to represent statistical evidence for 

the abnormal expression of genes. From the figure, 
four are noticeably underexpressed, while one is 
overexpressed. 
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DISCUSSION 
Identification of Genes Susceptible to Smoking 

Figure 1 displays the genes abnormally 
expressed in smoking vs nonsmoking patients. It 
was found that a large majority of genes were 
underexpressed and this could be explained by the 
nitrosamine metabolism pathway being affected by 
the individual’s smoking habit which inhibits the 
breakdown of harmful compounds in the cigarette 
(Tu et al., 2018). Furthermore, a small amount of 
genes were also overexpressed because the DNA 
repair pathways are constantly trying to repair 
DNA that may have been altered by the deleterious 
effects of the cigarette compounds (Laporte et al., 
2018). However, the trend is mostly in the 
underexpression which could cause mechanisms 
meant to repress tumors or cancer to also be 
underexpressed, hence causing the increase in 
likelihood of developing cancer (Yukimatsu et al., 
2019). Moreover, the overexpression of the DNA 
repair pathway could mean the failed attempts at 
repairing DNA damage, as such promoting further 
deleterious mutations (Majidinia and Yousefi, 
2017). 

 

Identification of the Abnormally Expressed 
Genes 

Numerous genes have been found to express 
improperly in smokers, and smoking is known to 
have major effects on gene expression. A notable 
abnormally expressed gene when an individual 
smokes is the CYP1A1 gene, which is involved in 
the metabolism of toxins, especially toxic materials 
that can be found in cigarettes (Zajda et al., 2017). 
Another aberrant gene is NRF2, a transcription 
factor that plays a role in cellular defense against 
oxidative stress due to smoking. On the other hand, 
numerous genes may exhibit aberrant patterns of 
expression when a person develops a tumor. One 
such gene that is improperly expressed when 
someone develops a tumor is the TP53 gene. 
According to Greathouse et al. (2018), this gene is 
a tumor suppressor gene that is crucial in 
preventing tumor development. Many different 
malignancies, including lung cancer, exhibit TP53 
mutations or aberrant expression. Another example 
of a gene that is commonly associated with 
abnormal expression in tumor development is 
KRAS and MYC, which are oncogenes that 
regulate cell growth and cell division by 
maintaining their proliferation (Bouillez et al., 
2016). Therefore, the mutation of one or both genes 
can lead to overexpression that will result in 
angiogenesis and resistance to cell death. Our 
analysis shows that the CT45A1, GCGR, TPTE, 
ABCC2 and PI16 genes are susceptible to abnormal 
expression when exposed to smoking and are 
among the most abnormally expressed in the 

development of squamous cell lung carcinoma. 

CT45A1 
The CT45A1 gene, also known as cancer/testis 

antigen family 45 member A1 is present in the 
testis and various types of cancer. CT45A1 is 
absent in normal lung tissue and is overexpressed in 
cell lung cancer, making the gene a marker for lung 
cancer (Zhou, 2019). This is proven by multiple 
studies; one is according to the research by Tang et 
al. (2017), where the CT45A1 was positive in 
multiple lung cancer cells and negative in normal 
cells. CT45A1 gene overexpression showed an 
increase in oncogenic and metastatic genes, which 
promote cell invasion, metastasis, tumorigenesis 
and stemness (Shang et al., 2014). On the other 
hand, silencing the gene showed a reduced 
migration and invasion of the cancer cells. This is 
due to the fact that CT45A1 diminishes the ERK/ 
CREB signaling pathway, causing the suppression 
of the lung cancer invasion, metastasis and 
proliferation. In addition, the result showed that 
CT45A1 has the strongest correlation between 
smoking and tumor growth and the degree of 
CT45A1 gene expression among other genes that 
were analyzed. 

 

GCGR 
The GCGR gene is a protein-coding gene that 

is involved in blood glucose regulation. The 
glucagon receptor is mostly found in the kidneys 
and liver. Mutations of the GCGR gene cause 
diseases like Hypoglycemia, Type 2 diabetes, 
Mahvash diseases (NIH, 2023). Not a lot of studies 
talk about how smoking impacts the GCGR gene. 
However, one study discovered the GCGR gene is 
expressed in epicardial adipose tissue, that is linked 
to genes that promote FFA (Free Fatty Acid) 
transport and is lower in former or non-smokers 
(Alexis et al., 2023). Another study found that a 
genetic mutation affecting the glucagon gene 
(GCGR) from smoking can increase the chance of 
developing type 2 diabetic mellitus (T2DM) (Li et 
al., 2014). Furthermore, the results showed that the 
GCGR gene is eight times under-expressed when 
there is a tumor and four times under-expressed for 
smoking. This further proves that the expression 
level of the GCGR gene is heavily correlated with 
both tumor development and smoking. 

 

TPTE 
Lung cancer is only one of the malignancies 

that exhibit abnormal expression of the 
transmembrane phosphatase with tensin homology 
(TPTE) gene. A protein restricted to germ cells 
called TPTE is excessively expressed in human 
malignancies of the liver, prostate, and lung (Cao et 
al., 2020). Only the copy on chromosome 21 
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appears to be expressed out of the copies of the 
TPTE gene that are present on chromosomes 13, 
15, 21, 22 and Y. The PTEN gene-related 
transmembrane tyrosine phosphatase known as the 
TPTE gene may function in signal transduction 
pathways (Forés-Martos et al., 2015). However, 
PTEN differs from TPTE in that it has an N-
terminal extension made up of three transmembrane 
domains. PTEN has phosphatase activity, while 
TPTE does not and it is unknown what biological 
purpose it serves (Kuemmel et al., 2015). Male 
individuals with lung adenocarcinoma who do not 
smoke had noticeably more mutations than female 
patients including in the TPTE gene (Levy et al., 
2023). However, the findings revealed that smoking 
causes a four times increase in TPTE gene 
expression, whereas tumors cause an eight times 
increase. This demonstrates the strong correlation 
between smoking and tumor growth and the degree 
of TPTE gene expression. 

 

ABCC2 
On chromosome 10q24, the adenosine 

triphosphate (ATP)-binding cassette subfamily C 
member 2 (ABCC2) gene, commonly known as the 
multidrug resistance-associated protein 2 (MRP2), 
encodes the human canalicular multispecific 
organic anion transporter (Wu et al., 2018). It was 
discovered that ABCC2 was overexpressed in a 
number of human malignancies. Additionally, 
cisplatin (DDP)-resistant A549 cells (A549/DDP) 
showed increased ABCC2 expression. Increased 
ABCC2 expression was substantially related to 
progression-free survival in lung cancer from 982 
samples, according to research by Chen et al. 
(2021). These findings imply that lung cancer 
patients with greater levels of ABCC2 have a worse 
prognosis. Changes in ABCC2 in asthmatics who 
smoke may be both advantageous for controlling 
oxidative stress and harmful for decreasing the 
intracellular bioavailability of pharmacological 
medicines (Aguiar et al., 2019). In addition, 
according to the findings, smoking increases 
ABCC2 gene expression by four times, whereas 
tumors increase it by eight times. The degree of 
ABCC2 gene expression and tumor development 
are strongly correlated, as shown by the result. 

PI16 
PI16 belongs to the superfamily of cysteine-

rich secretory proteins, antigen 5 and pathogenesis-
related 1 proteins (CAP), also commonly known as 
peptidase inhibitor 16, PSPBP, or CRISP-1 (Hazell 
et al., 2016). In a research by Paxson et al. (2013), 
it was shown that lung-derived mesenchymal 
stromal cells possess extremely high quantities 
more than 200-fold of a rare gene that is identified 
as PI16. For pulmonary 

matrix fibroblasts, PI16 is one of the most highly 
discriminatory extracellular expressing genes, but 
its transcript levels are modest (Xie et al., 2018). 
Therefore according to research by Pradhan et al. 
(2021), fibroblasts exhibit high levels of many 
genes, including PI16, SFRP1 and IGF2, which are 
similar to the adventitial fibroblasts observed in 
mouse lungs. Therefore, the results show that 
tumors raise PI16 gene expression by eight times, 
whilst smoking increases it by four times. The 
results demonstrate a substantial correlation 
between tumor development and PI16 gene 
expression levels. 

CONCLUSION 
Lung squamous cell carcinoma has been 

associated with substances contained within 
cigarettes. A differential gene expression analysis 
was conducted on smoking and non-smoking 
patients to investigate smoking-induced changes in 
gene expression and the genes involved in tumor 
development. 702 genes were found to be 
susceptible to abnormal expression when an 
individual smokes, whereas 124 genes were 
identified to be correlated to tumor development 
when taking into account an individual's smoking 
history. 33 of these identified genes overlapped, 
with CT45A1, GCGR, TPTE, ABCC2 and PI16 
being both susceptible to smoking and abnormally 
expressed in tumor development. The identified 
genes can serve as biomarkers for tumor 
development and exhibit a significant correlation 
between smoking history and tumor development. 
The limitation encountered in this analysis was the 
nonavailability of normal non-tumor patients, as 
such a more extensive differential gene expression 
analysis could be possible if the data is available. 
Future research could use a more extensive 
database and conduct differential gene expression 
analysis using other more conservative approaches. 
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Appendix A 
Data Availability 

The data for this study was acquired from 
clinical and sequencing reads dataset found in the 
Genomic Data Commons portal at 
https://portal.gdc.cancer.gov/projects/TCGA- 
LUSC. 

Appendix B 
Genes Susceptible to Smoking History and 
Involved in Tumor Development 

33 genes were marked as statistically 
significant when overlapping genes susceptible to 
smoking history and genes involved in tumor 
development. Absolute log fold change threshold 
was set to 2 and p-adjusted value threshold was set 
to 0.1. 

Table 2. Differentially expressed genes involved in tumor development and susceptible to smoking. 
(Gen yang diekspresikan secara diferensial yang terlibat dalam perkembangan tumor dan rentan 
terhadap merokok). 

 

Gene Name| 
Entrez ID 

baseMean log2FoldChange lfcSE stat pvalue padj 

CT45A1|54146 
6 

 

279.9182953 

 

-5.024736212 

 

0.9471185875 

 

-5.305287298 

 

1.12E-07 

 

9.27E-05 

 

CTAG1B|1485 

 

118.8325932 

 

-4.383071499 

 

0.9236473099 

 

-4.745395187 

 

2.08E-06 
0.0007035368 

907 

FAM133A|286 
499 

 

58.78405481 

 

-3.938665031 

 

0.6244618787 

 

-6.307294593 

 

2.84E-10 

 

7.13E-07 

MPPED1|758 86.10200162 -3.726934562 0.635944196 -5.860474214 4.62E-09 6.76E-06 

 

ZMAT4|79698 

 

14.05620375 

 

-3.248539127 

 

0.6495375026 

 

-5.001311108 

 

5.69E-07 
0.0002860102 

234 

KRT31|3881 253.2512138 -3.228075879 0.5809059312 -5.556968359 2.75E-08 3.22E-05 

 

GABRA5|2558 

 

47.49470512 

 

-3.13720967 

 

0.8098817485 

 

-3.873663873 
0.00010721 

12576 
0.0101879670 

8 

 

ASCL1|429 

 

19.38218755 

 

-2.924934225 

 

0.5723308791 

 

-5.110565115 

 

3.21E-07 
0.0002016655 

672 

NOS2|4843 594.5922914 -2.889522678 0.533004102 -5.421201576 5.92E-08 5.78E-05 

 

GCGR|2642 

 

14.08737515 

 

-2.868083179 

 

0.603293199 

 

-4.75404527 

 

1.99E-06 
0.0006872965 

184 

TPTE|7179 10.4066142 -2.83771475 0.6653051454 -4.265283036 2.00E-05 0.0033111589 

ABCC2|1244 152.1177768 -2.810677597 0.5011235272 -5.608752023 2.04E-08 2.56E-05 

 

ADH1C|126 

 

730.5137121 

 

-2.766174535 

 

0.6377459319 

 

-4.337424038 

 

1.44E-05 
0.0026677619 

18 

 

FDCSP|260436 

 

670.8994225 

 

-2.750932519 

 

0.6930008875 

 

-3.969594511 

 

7.20E-05 
0.0083267954 

78 

SLC38A11|151 
258 

 

48.94023374 

 

-2.729373761 

 

0.7074602254 

 

-3.85798899 
0.00011432 

37966 
0.0105225777 

2 

 

ESRG|790952 

 

80.92901464 

 

-2.638862984 

 

0.7670632822 

 

-3.440215489 
0.00058125 

11987 
0.0298783510 

9 

PNMA5|11482 
4 

 

18.64823611 

 

-2.593201805 

 

0.6678803014 

 

-3.882734375 
0.00010328 

83798 
0.0101534795 

1 

 

NPSR1|387129 

 

12.28481686 

 

-2.573802015 

 

0.5680888984 

 

-4.530632481 

 

5.88E-06 
0.0014824781 

18 

 

OLFM4|10562 

 

99.27157862 

 

-2.569994003 

 

0.5673480391 

 

-4.52983676 

 

5.90E-06 
0.0014824781 

18 
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Table 2. Differentially expressed genes involved in tumor development and susceptible to smoking. 
(Gen yang diekspresikan secara diferensial yang terlibat dalam perkembangan tumor dan rentan 
terhadap merokok). 

 

Gene Name| 
Entrez ID 

baseMean log2FoldChange lfcSE stat pvalue padj 

 

IL19|29949 

 

7.000651239 

 

-2.52020797 

 

0.6998667048 

 

-3.600982805 
0.00031701 

65454 
0.0209035902 

1 

 

OTX2|5015 

 

17.46249179 

 

-2.471578423 

 

0.6939874485 

 

-3.561416605 
0.00036885 

92713 
0.0225157846 

9 

SLC16A12|387 
700 

 

16.67611386 

 

2.390528327 

 

0.3695955282 

 

6.467957929 

 

9.93E-11 

 

2.91E-07 

 

IRS4|8471 

 

39.82876316 

 

-2.368153367 

 

0.6592296254 

 

-3.592304222 
0.00032776 

68848 
0.0213257014 

7 

 

FABP7|2173 

 

72.18377576 

 

-2.316084045 

 

0.6538976247 

 

-3.541967363 
0.00039715 

46101 
0.0237482246 

4 

 

PMP2|5375 

 

6.206885801 

 

-2.287300108 

 

0.6647387604 

 

-3.440900763 
0.00057978 

11315 
0.0298783510 

9 

FAM71F1|846 
91 

 

12.0209807 

 

-2.264981688 

 

0.6136848926 

 

-3.690789386 
0.00022355 

91898 
0.0168880547 

2 

 

NELL1|4745 

 

190.4193433 

 

-2.243476585 

 

0.682379142 

 

-3.287727375 
0.00100999 

5932 
0.0426116757 

7 

SLC6A10P|38 
6757 

 

141.697064 

 

-2.231599714 

 

0.4112647852 

 

-5.426187202 

 

5.76E-08 

 

5.78E-05 

 

PIWIL2|55124 

 

18.04562397 

 

-2.149526162 

 

0.522816928 

 

-4.111431835 

 

3.93E-05 
0.0056661344 

3 

 

CPB2|1361 

 

10.32776629 

 

-2.093714093 

 

0.5600134559 

 

-3.738685331 
0.00018498 

50959 
0.0149176054 

4 

 

PI16|221476 

 

15.18184549 

 

2.064601875 

 

0.454082149 

 

4.54675851 

 

5.45E-06 
0.0014084280 

47 

 

KRT83|3889 

 

5.615102587 

 

-2.045815355 

 

0.6033732598 

 

-3.390629799 
0.00069732 

22503 
0.0340525698 

9 

UGT1A8|5457 
6 

 

57.72882731 

 

-2.013447296 

 

0.6824030739 

 

-2.950524951 
0.00317234 

4206 
0.0789940667 

8 

 


