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Abstract

This work presents the implementation of back-projection algorithm for Synthet-
ic-Aperture Radar (SAR) signals on a low-cost, small, lightweight, and low-power consump-
tion platform: Raspberry Pi. The algorithm is implemented with GNU Octave open-source 
software and the performance was tested on Raspberry Pi 3B and 4 hardware. For perfor-
mance comparison, a single-threaded baseline implementation of back-projection is creat-
ed and then modified to run on several threads on an available multicore processor. Exe-
cuting a single-threaded code Raspberry PI is too slow for real-time imaging. However, the 
parallelized version shows computation improvement over the baseline version. We include 
a discussion of parallel implementation on a single Pi using Octave’s parallel package. This 
study contributes to the understanding of implementing SAR image processing on afford-
able single-board platforms with constrained computing resources.

Keywords: Synthetic-Aperture Radar (SAR), Image Processing, low-cost, small, lightweight, 
low-power consumption, Raspberry Pi, Back-projection Algorithm. 

1. Introduction

 Synthetic Aperture Radar (SAR) technology has gained increasing significance in 
various fields, including environmental monitoring, disaster management, agriculture, and 
defense. It offers the capability to capture high-resolution images of Earth’s surface under 
different weather conditions, making it invaluable for remote sensing applications. However, 
SAR data processing remains computationally intensive, often requiring specialized 
hardware or high-performance computing clusters. This poses a challenge, particularly in 
resource-constrained settings and for researchers seeking cost-effective solutions (Chan, 
Koo, Chung, & Chuah, 2008; Chang, 2022; Hun et al., 2011; Kurmi, Schedl, & Bimber, 
2019; W. K. Lee & Lee, 2017; Li et al., 2017).

 The primary objective of this research is to explore the feasibility of implementing 
the Back-projection SAR image processing algorithm on readily available off-the-shelf low-
cost, small, lightweight, low-power consumption platforms. Specifically, we focus on the 
Raspberry Pi 3 and Raspberry Pi 4, aiming to generate Single Look Complex (SLC) images 
from the SAR sensor. Our research endeavors to evaluate the performance and limitations 
of these platforms for SAR data processing and seeks to identify avenues for optimization 
(Almusawi, Al-Jabali, Khaled, Péter, & Géza, 2022; Saeed, Waqas, Mirbahar, & Khuhro, 
2022; Tivnan, Gurjar, Wolf, & Vishwanath, 2015).

 This study aims to contribute to the field of signal processing by demonstrating 
the adaptability and potential of affordable, widely accessible single-board platforms for 
SAR data processing. By evaluating the performance of the back-projection algorithm on 
Raspberry Pi 3 and 4, we aim to provide insights into the challenges and opportunities 
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associated with implementing SAR signal processing on cost-effective hardware. Furthermore, 
our findings will offer researchers and practitioners valuable information on the capabilities 
and potential enhancements of such platforms in the domain of SAR image processing. 

 The foundational principles of SAR signal processing have been extensively explored 
in the works of (Cumming & Wong, 2005; Richards, 2009). These texts offer a comprehensive 
understanding of SAR data acquisition, range, and azimuth processing, as well as image 
formation. The Back-projection algorithm used in this work is widely used due to its 
advantages in motion error compensation and image reconstruction. Time-domain back 
projection algorithms, such as global back-projection (GBP), fast back-projection (FBP), and 
fast factorized back-projection (FFBP), are commonly employed in SAR processing (Ivanenko, 
Vu, Batra, Kaiser, & Pettersson, 2022; Vu, Sjogren, & Pettersson, 2013). 

 The utilization of single board computers in signal processing has witnessed a growing 
body of literature. It is evident that affordable platforms such as Raspberry Pi have found 
applications in diverse domains. These platforms provide an accessible and cost-effective 
alternative to traditional high-performance computing clusters (Cardillo, Scandurra, Giusi, 
& Ciofi, 2021; Carducci, Lipari, Giaquinto, Ponci, & Monti, 2020; Pasolini, Bazzi, & Zabini, 
2017; Turicu, Creţ, Echim, & Munteanu, 2022).

 While SAR processing traditionally demands specialized hardware, researchers like 
Zhang et al. (2017) have started to explore resource-constrained platforms for this purpose. This 
aligns with the objectives of this research, which seeks to assess the suitability of Raspberry 
Pi 3 and 4 for SAR signal processing (Choi, Jeong, Lee, Lee, & Jung, 2021; Cholewa, Pfitzner, 
Fahnemann, Pirsch, & Blume, 2014; Y. C. Lee, Koo, & Chan, 2017; Schleuniger, Kusk, Dall, 
& Karlsson, 2013).

 The overall goal of this work is to implement the algorithm that maintains the same 
quality imagery on a platform with low memory and low computing power. This work is 
presented in three parts: algorithm implementation, algorithm revision, and their practical 
performance. Section 2 provide details on the hardware and software descriptions, data 
acquisition method, algorithm implementations, and performance measurements technique. 
Section 3 presents the results and discussions of the algorithm implementation, followed by 
a conclusion in section 4. 

2. Methodology
This section entailed the utilization of affordable single-board computers, open-source 

software tools, and the execution of a series of processing steps to achieve the objectives of 
this research. The hardware, software, and implementation procedures were carefully selected 
to assess the feasibility of low-cost platforms for SAR image processing.

2.1. Hardware and Software Description
We employed two cost-effective single-board computers, namely the Raspberry Pi 3(RP3) 

and Raspberry Pi 4(RP4), as the hardware platforms for our SAR signal processing experiments. 
The Raspberry Pi 3 is equipped with a 1.2 GHz quad-core ARM Cortex-A53 CPU and 1 GB of 
RAM, while the Raspberry Pi 4 offers improved processing power with a 1.5 GHz quad-core 
ARM Cortex-A72 CPU and 2 GB of RAM (or 4 GB in some configurations). These compact and 
affordable devices were chosen due to their wide availability and suitability for embedded 
computing tasks.

The choice of Raspberry Pi as the testing platform for our research was made after careful 
consideration of several factors, including performance, hardware availability, and the 
advantages and limitations of each model—Raspberry Pi 3 and Raspberry Pi 4. We selected 
the Raspberry Pi 3 for its affordability and established presence in the single-board computer 
market. It is equipped with a 1.2 GHz quad-core ARM Cortex-A53 CPU and 1 GB of RAM, 
making it a viable choice for low to moderate processing tasks. While its computational 
capabilities are relatively modest, it offers a balanced performance that aligns with our 
objective of evaluating SAR signal processing on cost-effective hardware.

The Raspberry Pi 4 was chosen for its superior performance, which was a significant 
advantage in our research. With a 1.5 GHz quad-core ARM Cortex-A72 CPU and 8 GB of RAM, 
it offers substantial processing power for a single-board computer. This model’s improved 
specifications were especially valuable when dealing with SAR data, which can be memory 
and computationally demanding.
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Both Raspberry Pi 3 and Raspberry Pi 4 are widely available and accessible to researchers, 
educators, and hobbyists, which was a key consideration in our choice. Their popularity has 
resulted in a robust ecosystem of software and support, making them suitable platforms for 
experimentation and development. Raspberry Pi 3 has high affordability, energy efficiency, and 
compatibility with a range of accessories and peripherals. However, it has modest processing 
power, which could be a constraint when handling large SAR datasets or demanding signal 
processing operations.

Raspberry Pi 4 has enhanced performance, higher RAM capacity, and better support 
for more compute-intensive tasks. Its capabilities were especially beneficial for our SAR 
signal processing experiments. While it outperforms the Raspberry Pi 3, it is still a single-
board computer with inherent limitations compared to more powerful computing platforms. 
Additionally, it generates more heat and consumes more power than its predecessor.

The choice of Raspberry Pi 3 and Raspberry Pi 4 as our testing platforms was driven by 
a balance between affordability, performance, and hardware availability. The Raspberry Pi 3 
provided a cost-effective option for assessing SAR signal processing, while the Raspberry Pi 
4’s improved hardware specifications made it an attractive choice for tasks demanding more 
computational power. This selection allowed us to comprehensively evaluate the potential of 
these affordable platforms in the context of SAR signal processing, considering their respective 
advantages and limitations. Table 1 shows the specifications of the hardware that we use in 
this work.

Table 2-1: Hardware Specification
Specifications Raspberry Pi 3B+ Raspberry Pi 4
CPU Quad-core ARM Cor-

tex-A53 @ 1.4 GHz
Quad-core ARM 
Cortex-A72 @ 1.5 
GHz

RAM 1 GB 4 GB
USB 4 x USB 2.0 2 x USB 3.0
Network Gigabit Ethernet Gigabit Ethernet
HDMI Port 1 x HDMI 1.4 2 x Micro HDMI 

(HDMI 2.0)
HDMI Resolution 1080p 4K @ 60Hz or 

1080p @ 60Hz
GPIO Yes Yes
Graphics 40-pin 40-pin

The software stack used in this research predominantly relies on open-source solutions. 
We harnessed the power of the GNU Octave software as our primary development tool for the 
signal and image processing code. Additionally, the Raspberry Pi platforms operated on the 
Raspbian operating system, a Debian-based Linux distribution optimized for these single-
board computers. The open-source nature of these software components aligns with our 
objective of affordability and accessibility in SAR signal processing. 

2.1. Data Acquisition 

The raw signal data that we used in this work was the results of a SAR measurement 
campaign conducted inside a hangar with a size of 25 by 25 meters. The experimental SAR 
radar consisted of a PC connected to a portable VNA with two horn antennas (Figure 2-1). The 
radar was mounted at a height of 5 meters (Figure 2-2) with the horn antenna facing several 
objects as the targets, such as corner reflectors and small UAVs (Figure 3-1). 
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Figure 2-1: Basic experimental SAR hardware configuration.

Figure 2-2: SAR data acquisition geometry

The configuration of the basic ground-based SAR  scanning system is shown in Figure 
2-2. The reflection function of the targets in the scanning region of a two-dimensional (2D) 
imaging geometry is defined as 𝜌(x, y), and the antenna positions are expressed in Cartesian 
coordinates as  where,  and  are the distance and angle 
between the antennas and the scene origin, respectively. The radar’s backscatter signal can 
be described as follows with  as the total number of scatterers.

(2-1)

where, 𝑘 = 4𝜋𝑓 ⁄ 𝑐 is a (two-way) wave number, 𝑓 and 𝑐 are the radar frequency and speed 
of the light, respectively. 

The instantaneous distance between the targets and antennas is given by

(2-2)
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where the coordinates of the p-th scatterer and antennas are represented by ( , ) and 
(𝑥,𝑦) respectively.

As demonstrated in Figure 2-2 the SAR platform gathers 2D GBSAR data by gathering 
back-scatter data at a total of N distinct places along the L synthetic aperture. Next, focused 
complex SAR data 𝜌(𝑥, 𝑦) is obtained using any reconstruction algorithm, such as back-
propagation algorithm (BPA), to convert the received raw SAR data into a comprehensible 
image (Yigit, 2013; Yigit, Demirci, & Ozdemir, 2021).

Table 2-2 shows the parameters used in the measurement using VNA. 

Table 2-2: Data Acquisition Parameters

Specifications Value
Frequency 5 to 7 GHz
S Parameters S21
Pulse Type SFCW
Frequency steps 0.5 MHz
Number of frequency samples 4001
Height 5 m
Number of cross range samples 173
Nominal transmission power -1 dBm
Polarization HV
Cross range sample sampling 10 cm

2.2. Back-projection Algorithm Theory for Image Formation

In this study, the SAR signal processing system is realized by applying the back-projection 
algorithms as outlined in (Yigit, 2013). The development of the Back-projection Algorithm 
(BPA) commences with the examination of the inverse Fourier transform (IFT) expression of 
the reflectivity function , which is provided in Cartesian coordinates.

(2-3)

In the provided equation,  corresponds to the 2-D Fourier transform (FT) of 
. As illustrated in Figure 2-2, the instantaneous location of the antenna platform at 

(x, y) is determined by a unit vector  that originates from the center of the scene and points 
towards this specific position. The associated observation angle at this location is denoted as 
θ, representing the angle between the unit vector  and the range axis y. Since the spatial 
frequency data samples are collected along the polar radius θ, as depicted in Figure 2-2, 
Equation (2-3) can be adjusted and expressed in polar coordinates  as follows:

(2-4)

In this context, r is the range from an instantaneous antenna platform location to the 
point . The projection-slice theorem is employed to establish a connection 
between the target’s FT  and the available measured data . In a 2-D space, the 
theorem essentially states that one-dimensional (1-D) Fourier Transform of the projection 
at the angle θ represents the slice of the 2-D FT of the projected (original) scene at the same 
angle, i.e., . Consequently, the sampled representation of  can be 
derived from the Fourier Transform of the projections  measured at various observation 
angles. Using this principle, Eq. (2-4) can be expressed as below:

(2-5)

The integral enclosed in Eq. (2-5) can be considered as the 1-D Inverse Fourier Transform 
(IFT) of a function  evaluated at the distance r. By defining 
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as the IFT of this function, Eq. (2-5) can be represented as

(2-6)

Equation (2-6) represents the ultimate focused image obtained from the 2-D-filtered 
Back-projection algorithm. projection algorithm. projection algorithm. 

3. Result and Discussion
To conduct SAR imaging experiments, the measurement system given in Figure 2-1 was 

constructed in the Research Center for Aviation Technology, National Research and Innovation 
Agency, Rumpin, Bogor. The system consists of two C Band horn antennas (WR-159), a Vector 
network analyzer (N9917A) and computer to collect the phase histories data. Measurements 
were carried out in the frequency range of 5 - 7 GHz. Horizontal half-power beam width of 
the antennas was 16.9 degree and vertical at 14.3 degree with 20 dB Gain. The picture of the 
objects used as target are given in Figure 2-2 with the exact location of each object in Figure 
3-2. 

3.1.  Ground Based SAR Experiment
The SAR scenario for obtaining backscattering data from targets. The targets were set on 

the ground parallel to the scanning path. P1 through P6 were the spatial coordinates of the 
six reflectors. Four corner reflectors of varied diameters were used to establish a reference for 
the radar cross-section (RCS).

Figure 3-1: Photograph of the radar targets scene

The dimensions of these reflectors are as follows: P1 has a side length of 40 cm, P2 and 
P4 have a side length of 100 cm, and P3 has a side length of 50 cm. Furthermore, P5 and 
P6, a prototype of an Unmanned Aerial Vehicle (UAV) featuring a fuselage constructed from 
composite material, also contribute to the reflection process.
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Figure 3-2: Target Locations

Figure 3-3 shows the real and imaginary part of the raw data acquired from the measurement 
data of S21 by the VNA. The measurement was taken once at each azimuth position, resulting 
in 173 azimuth bins consisting of 4001 range samples. The complex IQ data then organized 
into a complex floating-point matrix with a size of 173x4001 samples. 

Figure 3-3: The real and imaginary component of the SAR complex signal measured from 
the experiment.

To confirm the data acquisition correctness, we preprocessed the phase histories data 
using inverse Fourier transform to produce the range profile in Figure 3-4. In the picture, it 
can be observed that there are backscatter values in the form of arcs at sample ranges 167, 
162, 205, 235, 264, and 272.
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Figure 3-4: Magnitude image of range compressed data (dB). 

3.2 Back-projection Algorithm Implementation
The back-projection algorithm from section 2.3 is implemented as the following:

Figure 3-5: Flow chart for main program block of back-projection.

First, the program reads system parameters such as wave propagation speed, system 
geometry, pulse number, and resulting image size. The program then begins by loading phase 
history data from an external file obtained from SAR data acquisition. The loaded data is 
stored in a variable which will be processed further in the subsequent steps. 

 The processing continues with adjustments to the phase history data. The orientation of 
the frequency vector is ensured to be horizontal. Range vectors are calculated, and parameters 
like the maximum range and cross-range sample spacing are determined. The program then 
defines the cross-range resolution and range resolution, crucial for the later steps of the 
imaging process. Image dimensions are defined, along with the number of image pixels. The 
coordinates of the final image are established. The number of Fast Fourier Transform (FFT) 
points is computed for later data transformations.

 The core of the back-projection program involves looping through each pulse in the 
data as shown in Figure 3-6. For each pulse, an Inverse Fast Fourier Transform is applied 
to the complex data. The required distances and angles for each image point are calculated. 
Points within a specified angle range are identified, and the image data is updated accordingly.

 After processing all pulses, the program creates the final SAR image. The data is 
transformed and scaled using logarithmic operations, ensuring the dynamic range of the 
image is manageable and visually informative. The resulting image is ready for display and 
further analysis. 
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Figure 3-6: Flow chart for main program block of back-projection.

The implementation this flowchart to the Back-projection algorithm mentioned in 
equation theory section 2.  can be described as follows:
1. For all observation angles repeat step 2 to 5.
2. Take 1-D IFT of  to obtain .
3. For each pixel, calculate the corresponding range value r.
4. For each pixel, calculate  value through interpolation. 
5. Add interpolated values to .

3.3 Execution Time 
To demonstrate and analyze the performance of the back-projection program, we 

have implemented two distinct versions using the GNU Octave environment. The first version 
represents the baseline implementation, which exclusively employs a single thread operating 
on a single processor core. In contrast, the second version utilizes multiple threads, thus 
enabling parallel execution across multiple processor cores.

These implementations facilitate a comprehensive evaluation of the program’s efficiency 
and scalability in leveraging modern multi-core processor architectures used in the hardware. 
The baseline version serves as a reference point for assessing the benefits of parallelization 
in the second version, shedding light on the potential performance gains achieved through 
multi-threaded processing. 

3.3.1 Single Thread Version
To evaluate the baseline version of the program, input data of dimensions 173x4001 

(cross-range x range) samples will be processed to generate four distinct images of varying 
sizes: 128x128, 256x256, 512x512, and 1024x1024. Each sample in both the input and 
output data uses the complex double data type, which is implemented in GNU Octave and 
consumes 8 bytes per sample. This testing strategy allows for a comprehensive assessment of 
the program’s performance across different output image sizes, reflecting real-world scenarios 
where users might require various resolutions for specific applications. By employing complex 
double data types and accurately accounting for the memory consumption of 8 bytes per 
sample, the testing framework ensures an accurate representation of the program’s resource 
utilization and computational demands, which are vital considerations in scientific and 
computational research. 

Table 3-1 and Figure 3-6 present the program execution times, which were measured 
by introducing code lines to record the time before and after the back-projection process. 
The table highlights the execution times for baseline version when processing input data to 
generate images of various dimensions.  
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Table 3-1: Execution Time (seconds) of BPA on  Raspberry Pi (RPI) 3 and 4 for Image Size of 
128x128, 256x256, 512x512, 1024x1024

Image Size RPI 3 (s) RPI 4  (s)
128 x 128 6.6652 3.8099
256 x 256 13.6745 9.5814
512 x 512 42.7172 29.7940
1024 x 1024 156.9362 116.6527

The algorithm allows for the image to be constructed step by step, focusing on one pulse at 
a time. This means that only the current pulse being processed and the image itself needs to 
be stored in memory at any given moment. The benefit of reduced memory usage comes with 
a tradeoff – there’s a noticeable increase in the computational workload.

To break it down, the computations required for filtered back-projection can be summarized 
as follows: For a data collection with P azimuth samples (pulses) and L frequency bins (samples) 
for each pulse, the convolution step (Fourier multiplication) involves  operations. 
The data is then used in the back-projection step, essentially adding up the results of the 
convolution step for each pixel in the image.

 

Figure 3-7: Single Thread BPA execution time for image size: 128x128, 256x256, 512x512 
and 1024x1024

Based on single thread execution time data from Table 3-1, if we compare the execution 
time between the same image size for RPI4 and RPI3, we can see that for image size 128x128, 
256x256, 512x512 and 1024x1024, RPI 4 has 1.74, 11.42, 1.43 and 1.34 times faster than 
its counterpart. These measurements are also in line with the facts that for an image with N 
× N pixels and P projections, the back-projection step requires  operations. Combining 
these two steps results in a total number of operations . If N is significantly 
larger than L, N2 dominates the term, and the required operations can be approximated as 

. In many cases, it’s assumed that P = N, making the computational load around 
. This represents a substantial increase in the number of operations (for large P) (Rasmussen 
2016).

For a verification of the algorithm result four result images are shown in Figure 3-7. 
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Figure 3-7: Single Thread BP algorithm result for images size: 128x128, 256x256, 512x512 
and 1024x1024

Figure 3-7 shows the results of focusing using the BPA for various image sizes. These 
results demonstrate the backscatter values consistent with the objects visible in Figures 3-1 
and 3-2. They also indicate that the algorithm’s implementation on the GNU Octave platform 
is functioning correctly.

3.3.2 Multithread Version
To harness the available multicore processors on the Raspberry Pi, the baseline 

program, initially designed to use a single thread, was adapted to a multithreaded approach. 
We leveraged a library package called “Parallel,” which is available in GNU Octave, to create 
a multithreaded version of this algorithm’s implementation. The “Parallel” package offers the 
pararrayfun function, which serves to execute the same program routine on diverse datasets, 
following the principle of “Single Instruction Multiple Data” (SIMD).

This modification allowed us to take full advantage of the multicore architecture of 
the Raspberry Pi, enhancing the program’s performance by parallelizing the processing of 
different data subsets. The “Parallel” package’s pararrayfun function efficiently orchestrates 
the execution of the algorithm across multiple threads, further optimizing computational 
resources and execution times.

 Flow chart of the multithreaded version of BPA is shown in Figure 3-8.

(a) (b) 

Figure 3-8: Flow chart for Parallel Back-projection implementation (a) Flow chart for 
general processing of the algorithm and (b) Flow chart for the parallel processing of 

each pulse that run in Thread 1 to N.
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The parallelization strategy involves transforming the sequential processing of pulses 

into a parallel approach, matching the number of processor cores available. In this manner, 
since the Raspberry Pi has 4 processor cores, the maximum number of threads that will 
be executed in parallel is 4. To demonstrate the impact of the number of threads on data 
processing speed, we recorded the program’s execution speed for four different dataset sizes, 
each executed using one to four threads. In this experiment, we aimed to illustrate how 
varying the number of threads influences the processing speed of data. By testing different 
dataset sizes across a range of threads, we could observe the correlation between the number 
of threads and the program’s overall execution time, providing valuable insights into the 
program’s performance under different configurations. Table 3-2 shows the execution time of 
the multithreaded BPA.

Table 3-2: Execution time (seconds) of the BPA on two platforms considering image size 
(128x128, 256x256, 512x512, 1024x1024) and number of threads (1,2,3,4)

RPI3 (s) RPI4 (s)
Image Size

128x128 256x256 512x512 1024x1024 128x128 256x256 512x512 1024x1024

No of 
Threads 

1 6.6652 13.6745 42.7172 156.9362 3.8099 9.5814 29.7940 116.6527
2 4.1642 9.3552 20.8944 84.3915 2.5791 5.7540 17.2301 66.0177
3 3.4395 8.4475 17.5016 65.4754 2.3223 4.7237 13.4965 50.5040
4 2.3426 6.4746 15.8629 54.2575 2.9596 4.4214 12.0937 44.1094

From Figure 3-9 can be seen that for each image size, as the number of threads is 
increasing the execution time is decreasing (processing getting faster). 

 To calculate the speed-up due to the addition of threads, we can compare the execution 
time of the program for each number of threads with the execution time of the program 
running with a single thread for each image size. Table 3-3 displays the speed-up values for 
both platforms, various image sizes, and the number of threads used. In general, the larger 
the number of threads used, the larger the speed-up value become. In terms of image size with 
the same number of threads, the speed-up value increases as the image size grows. 

 

 
Figure 3-9: Multiple Thread BPA execution time using RPI4 for image size: 128x128, 

256x256, 512x512, and 1024x1024 and thread size 1, 2, 3, and 4.

Comparing the performance of RPI3 and RPI4, although in terms of execution time RPI4 
is faster than RPI3, however speed-up values of RPI4 for each number of threads are lower 
than its counterpart. 
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Table 3-3: Execution time (seconds) of the BPA on two platforms considering image sizes 
(128x128, 256x256, 512x512, 1024x1024) and number of threads (1,2,3,4)

RPI3 (s) RPI4 (s)

Image Size

128x128 256x256 512x512 1024x1024 128x128 256x256 512x512 1024x1024

No of 
Threads 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.60 1.46 2.04 1.86 1.48 1.67 1.73 1.77

3 1.94 1.62 2.44 2.40 1.64  2.03 2.21 2.31

4 2.85 2.11 2.69 2.89 1.29 2.17 2.46 2.64

4. Conclusions
We can conclude that the Back-Projection Algorithm for filtered back-projection on 

Raspberry Pi 4 (RPI4) is faster than its counterpart Raspberry Pi 3 (RPI3) for all image sizes 
and number of threads. Furthermore, our research on the implementation of the BPA for 
SAR signal processing on cost-effective single board computers, specifically the Raspberry 
Pi 3 and Raspberry Pi 4, has shed light on the following key conclusions: The Raspberry Pi 
4 exhibited superior computational performance compared to the Raspberry Pi 3, making it 
a more attractive choice for SAR signal processing tasks, particularly with smaller datasets. 
The limitations identified, especially with larger datasets, emphasize the need for optimization 
techniques like parallelization to enhance the processing speed on these platforms, providing 
an exciting avenue for future research.Overall, this study contributes to the understanding 
of leveraging affordable, off-the-shelf hardware for SAR signal processing, while underscoring 
the importance of optimization in realizing the full potential of these platforms. These insights 
offer researchers, educators, and practitioners valuable guidance for achieving efficient SAR 
applications with limited resources, ultimately advancing the accessibility and affordability of 
SAR technology.
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