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Abstract
In the present study, the Artificial Neural Networks (ANN) technique was implement-

ed to predict the flow parameters of a Five-Hole Probe (FHP). The experimental data were 
obtained from a subsonic open jet wind tunnel at a speed increased from 0 to 1180 rpm 
in increments of 200 rpm. The ANN approach is carried out in stages, starting with the 
method of selecting training data and validation, then increasing the number of neurons, 
varying the correlation between the activation function and the optimizer, and finally find-
ing the optimal number of hidden layers. In the ANN approach, the mean absolute errors 
of 0.2705, 0.3326, and 1.0748 were achieved for estimating angle α which represents the 
angle of attack, angle β which represents the angle of sideslip, and speed, respectively. At 
the end of this study, the results were compared with the rational function approach. It 
was concluded that the ANN approach was more accurate compared to the rational func-
tion based on statistical parameters such as mean absolute error, max absolute error, and 
coefficient of determination (r2).

Keywords: five-hole probe, artificial neural network, calibration, wind tunnel, rational func-
tion. 

Nomenclature
= Angle of Attack, degree

= Angle of Sideslip, degree

= Coefficient of determinations

1. Introduction
Angles of Attack (AoA), Angles of Sideslip (AoS), and airspeed (V) are critical parame-

ters essential for enhancing the stability and controllability of aircraft, particularly during 
take-off and landing. Numerous research efforts, as exemplified by Popowski & Dabrows-
ki. (2015) and more recently Liu. (2023), have investigated estimation methods for these 
angles. Popowski & Dabrowski. (2015) employed estimates based on measuring linear ve-
locity components of an object in Earth’s coordinates and on the object’s attitude angles. 
Liu. (2023) introduced an estimation method based on the Air Data System (ADS), Inertial 
Navigation System (INS), and aircraft aerodynamic data. Flight test data analysis from 
these studies indicates that the angle of attack estimation error remains within 1°, and the 
side-slip angle estimation error is within 1.5°, meeting the requirements for engineering 
applications.

In addition to estimation methods, direct measurement methods for AoA and AoS 
often involve the use of pivoted vanes or pressure-type sensors, while airspeed measure-
ments typically utilize pitot-static probes. However, the specificity of sensors for certain 
parameters necessitates the installation of numerous sensors on an aircraft.

The utilization of a pressure-type sensor, specifically a Multi-Hole Probe (MHP), offers 
an effective solution to reduce the number of sensors required on an aircraft. Multi-hole 
pressure probes serve as unique measurement instruments capable of simultaneously 



Indonesian Journal of Aerospace Vol. 22 No. 1 Juni 2024 : pp 57 – 70 (Birry et al.)

58

measuring velocity components and pressure fields of the flow. Consequently, these probes 
can be employed to measure AoA, AoS, and airspeed. Another notable advantage of MHP lies 
in their lack of moving mechanical parts, rendering them more robust, and they do not neces-
sitate recalibration as long as the probe remains unaltered or unaffected.

In this study, a novel approach will be employed for the calibration of Five-Hole Probe 
(FHP) pressure data. The proposed technique utilizes the Artificial Neural Network (ANN) ap-
proach to directly process the raw pressure data corresponding to angles α, β, and speed. The 
pressure data utilized in this research is sourced from the dataset presented by Arifianto and 
Farhood. (2015).

1. Methodology

1.1 Related Works

Many researchers utilize multi-hole probes including four-hole to eighteen-hole probes 
to measure air flow properties. The FHP was first used by Treaster & Yocum. (1978) as a pres-
sure measuring tool in calculating velocity vectors and total and static pressures of the flow 
field. This technique encouraged researchers to use an FHP and to propose several techniques 
for FHP measurements. As did by Gallington. (1980), which uses a sectoring scheme that 
selects combinations of holes to which the flow is attached. Next, Ranjan Paul et al. (2011) 
defines a new pressure coefficient to overcome limitations in calculating flow parameters in 
the Gallington method. Then Pisasale & Ahmed. (2002) proposed a successful measurement 
technique that extended to an angle of 75°. Followed by Mortadha & Qureshi. (2019) for ex-
tending the usable range of the calibration map of a four-hole probe for measuring high flow 
angles. In their study, the researchers defined the non-dimensional pressure coefficient in 
different ways. The data reduction technique commonly used standard regression including 
linear interpolation and polynomial curve fit.

Recently, ANN has been used to calibrate FHP measurements. As in Nikpey Somehsar-
aei et al. (2020) which calibrates FHP measurements using a Multi-Layer Perceptron (MLP) 
network with 2 stages. The experimental data used are α and β angles in the range of ±25 de-
grees with a speed of Ma 0.1 to 0.8. The first stage determines the ANN model from the input 
which is the pressure coefficient from the α angle, β angle, and Ma number (namely, 𝑘𝛼, 𝑘𝛽, 
𝑘𝑉, respectively) to the output in the form of α angle, β angle, and Ma number. In the second 
stage, determining the model from the prediction error results of the first stage is used as 
output to obtain an error prediction. Ultimately, the final prediction result is the sum of the 
stage 1 and stage 2 models. From the method above, it is known that this method outperforms 
the 5th-order polynomial method. Furthermore, Fathi & Sadeghi. (2022) improved the ANN 
method used to calibrate FHP measurements. The difference is the experimental data used 
in that research is only at a speed of 10 m/s. In that research, different results were found 
regarding the more optimal ANN method. The ANN model using the Radial Basis Function 
(RBF) network outperforms the MLP network used by Nikpey Somehsaraei et al. (2020). The 
selection of test data that is different from the training data is also a difference in the meth-
ods used by Nikpey Somehsaraei et al. (2020) and Fathi & Sadeghi. (2022). Apart from that, 
they both looked at the model’s interpolation capabilities in the intermediate region compared 
to conventional methods. It was found that ANN produces better results than conventional 
methods which have oscillations in the intermediate region. 

A different approach was taken by Zhou et al. (2023) who applied the K-nearest neigh-
bors (KNN) algorithm in seven-hole probe measurements to measure the angle of attack on a 
wind turbine blade. KNN is a machine learning algorithm in the Scikit-learn library. Then Wu 
et al. (2022) used an estimation method based on modern ANN proposed to estimate airflow 
data including AoA, AoS, and air speed from pressure data at large AoA. In addition, a distrib-
uted AoA estimation ANN structure is proposed to improve the accuracy by differentiating the 
range of AoA. Li et al. (2023) also uses the ANN method to transform pressure data measured 
from FHP into flow parameters in a tail sitter VTOL UAV. They used a backpropagation-based 
ANN with 4 hidden layers with a variety of neurons in each layer. The model produces one 
output that represents AoA or AoS or velocity of the incoming flow. Multiple single-output 
neural networks were selected based on comparative experiments.
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While sharing similarities with the research conducted by Nikpey Somehsaraei et al. 
(2020) and Fathi & Sadeghi. (2022), this study distinguishes itself through the utilization of 
input data directly derived from measured pressure data, without undergoing conversion into 
pressure coefficients. This approach enables the conversion of pressure measurements into 
parameters such as AoA, AoS, and speed directly on board the aircraft or Unmanned Aerial 
Vehicle (UAV). Notably, variations in speed within the measurement data differ between the 
two studies. In this investigation, six speed variations are considered, in contrast to the work 
by Fathi and Sadeghi. (2022), which focuses solely on a single speed. The tool employed for 
constructing the ANN model is TensorFlow, an open-source ANN library developed by Google 
specifically for numerical computing and machine learning applications.

1.2. Problem Definition
This Problem Definition aims to articulate the research quandary addressed through the 

application of ANN techniques in flow measurements. Two pivotal research inquiries guide 
this investigation:

1. Characteristics of ANN Models for Predicting Pressure Relationships: The primary research 
question delves into the characteristics of the ANN model regarding its ability to predict 
the relationship between pressure and velocity variables—angle α and angle β—relative to 
other methodologies. The emphasis is on discerning the ANN model’s capacity to effectively 
model the correlation between pressure and these variables.

2. Effect of Hyperparameters on Prediction Accuracy: The second research question explores 
the impact of hyperparameters within the ANN model on the prediction accuracy of veloc-
ity variables, angle α, and angle β. The research endeavors to scrutinize various hyperpa-
rameter configurations to ascertain the optimal combination of values, thereby enhancing 
the prediction accuracy of the ANN model.

The research objectives encompass:
1. Comparison of existing FHP pressure data calibration methods with the proposed meth-

odology in this study. This comparative analysis aims to unveil the advantages and disad-
vantages associated with each calibration method.

2. Exploration of hyperparameter combinations that minimize the prediction error of the ANN 
model, with the goal of improving model accuracy and optimizing prediction performance.

The research imposes specific limitations:
1. Utilization of FHP pressure data from Arifianto & Farhood. (2015) as the primary dataset.
2. Implementation of the ANN model using the Python programming language.
3. Restriction of the α angle data processing range from -20° to +20°.
4. Limitation of the β angle data processing range from -20° to +20°.
5. Use of pressure data encompassing speeds of 200, 400, 600, 800, 1000, and 1180 rpm to 

ensure sufficient variability in the study.

1.3. Method
In this chapter, we will elucidate the process, commencing with the utilization of FHP 

pressure data and culminating in the presentation of the proposed ANN model. The prima-
ry objective of this model is to forecast pressure data for the variables angle α, angle β, and 
speed. In this research too, conventional techniques, namely rational functions, will be used 
to estimate the parameter values as a comparison to the ANN model.

1.3.1. FHP Pressure Data
Pressure data derived from Arifianto & Farhood. (2015) was acquired using a cus-

tom-manufactured probe characterized by a length of 203.2 mm and a tip diameter of 5.56 
mm. Each of the five holes possesses an outer diameter of 1.60 mm and an inner diameter of 
0.89 mm, resulting in a hole diameter-to-tip diameter ratio of 0.16. The conical design of the 
probe tip features a 90° angle, facilitating precise measurements of the α angle and β angle 
at low speeds. Furthermore, the probe can be calibrated to accurately measure these angles 
within the range of ±22.5°.
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Figure 2-1 Five-hole pressure probe(Arifianto & Farhood, 2015a)

Probe calibration was executed at the Subsonic Open Jet Wind Tunnel located at Vir-
ginia Tech. The calibration procedure involved incrementally increasing the speed of the wind 
tunnel fan from 200 to 1180 rpm, with increments of 200 rpm. At each speed, the angles α 
and β were systematically varied within the range of -20° to +20°, with increments of 5°. Thus, 
with 6 variations of speed, 9 variations of angle α, and 9 variations of angle β, resulting in a 
total acquisition of 486 data points.

This set of 486 pressure data points will be utilized in the present research, employing 
the ANN approach to discern and predict the intricate relationship between pressure and the 
variables angle α, angle β, and speed. Each individual data point represents the pressure 
data corresponding to specific values of angle α, angle β, and speed. Figure 2-2 illustrates the 
pressure measurements for diverse angles α and β at a fan speed of 600 rpm.

1.3.2 Data Preparation 
For this research, two methodologies were employed to select training and validation 

data. The ratio of the amount of data for training and validation in an ANN can vary depending 
on the total size of the dataset and the specific characteristics of the problem at hand. Gener-
ally, the data split is 70-80% for training data and 20-30% for validation data. If the size of the 
data set is large (for example up to millions), the proportion for validation data can be smaller 
because the absolute size is still sufficient.

In the initial approach, data was randomly partitioned, with 80% allocated to training 
and 20% to validation. As depicted in Figure 2-3 and Figure 2-4, the histogram illustrates a 
well-distributed dataset. However, certain validation data points, such as P1 and P4, still fall 
outside the training data distribution.

In the second data selection method, the training data contains all the outer data points 
(pressure data at angles α at -20° and 20°, angles β at -20° and 20°) at all speeds. All these 
outermost data points totaled 192. To fulfill 80% of the training data from the data set (i.e. 
388 data points), then 196 data points were randomly selected from the remaining data set. 
Histograms of training and validation data using this method are presented in Figure 2-5 and 
Figure 2-6.
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Figure 2-2 Pressure distribution at various configurations of angle values α and β for each 
probe hole
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Figure 2-3 Histogram of Train data vs Validation data as input method 1

When employing the second method, all validation data points fall within the range of 
the training data. This outcome aligns with expectations, as ANN excels at interpolation. Con-
sequently, the second data selection method is anticipated to yield an ANN model that more 
accurately approximates the relationships among variables compared to the first method.

Figure 2-4 Histogram of Train data vs Validation data as the output of method 1
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Figure 2-5 Histogram of Train data vs Validation data as input of method 2

Figure 2-6 Histogram of Train data vs Validation data as output of method 2
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1.3.3. ANN Modeling
This study meticulously followed a series of steps, as delineated in Figure 2-7, to con-

struct an optimized ANN model. A systematic test was conducted to assess the impact of train-
ing data selection on model accuracy. To further enhance accuracy, optimal combinations of 
hyperparameters were identified through multiple trials. These trials encompassed adjust-
ments such as increasing the number of neurons, selecting an optimal activation function 
and optimizer, and introducing hidden layers to observe their impact on loss and accuracy.

In the initial step, our model incorporated one hidden layer with 16 neurons, employing 
the SeLU activation function and Adam optimizer. The MAE was utilized as the loss function, 
with its values monitored throughout the training process. To assess the model’s perfor-
mance, both method 1 and method 2 were applied to the training data. The efficacy of each 
model was gauged based on the estimation results for both the training and validation data.

Upon analyzing the preliminary test results, it was discerned that method 2 resulted 
in a smaller loss compared to method 1. Consequently, method 2 data selection was chosen 
for the subsequent refinement of the ANN model. The outcomes of this test are presented in 
Table 2-1.

Figure 2-7 Flowchart ANN modeling

Table 2-1: Comparison of the initial result between different methods of data selection

Method Statistical  
parameter α β RPM

Method 1

MAE

Max AERR

R2

5.73502

19.1146

0.65117

5.94318

19.1867

0.62600

35.4984

251.476

0.97675

Method 2

MAE

Max AERR

R2

5.52152

20.7831

0.67163

5.93043

19.2126

0.62423

36.9209

213.027

0.97645

In the subsequent phase, neurons are incrementally added to the model, with the num-
ber of neurons spanning from 16 to 100. As depicted in Figure 2-8, the minimum loss is at-
tained when the model incorporates 97 neurons. This value has been identified as the optimal 
number for constructing the ANN model.
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Figure 2-8 Number of neurons variation

Following the determination of the optimal number of neurons, a series of tests were 
conducted on various activation and optimizer functions. The activation functions examined 
encompassed ReLU, Sigmoid, tanh, Softplus, Softsign, SeLU, eLU, and exponential. Simulta-
neously, the optimizer functions tested included Adam, Rmsprop, SGD, Adadelta, Adagrad, 
Adamax, Nadam, and FTRL. The exploration of these activation and optimizer function varia-
tions resulted in a total of 64 combinations of ANN structures.

Based on the outcomes illustrated in Figure 2-9, it was observed that utilizing the com-
bination of Adam as the optimizer and SeLU as the activation function yielded the smallest 
loss value, registering at 1.69.

Figure 2-9 Activation function and Optimizer variation

Multiple trials were carried out to assess the influence of hidden layers on the outcomes, 
ranging from 1 to 6 hidden layers. The data depicted in Figure 2-10 clearly indicates that 
utilizing 4 hidden layers can contribute to a noteworthy reduction in loss. However, a further 
increase in the number of hidden layers may lead to a higher loss value, signifying a potential 
issue of overfitting.
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Figure 2-10 Hidden layer variation

1.3.4. Rational function
In this technique as used in Arifianto & Farhood. (2015), equations (2-1) are used to 

calculate angle α and angle β from the FHP pressure data. The coefficients  and 
 are obtained by solving the least-squares problem with linear regression. The 

equations are defined as:

where,

 

Solving the least-squares problem with linear regression involves finding the coefficients 
that minimize the sum of the squared differences between the predicted and actual values of 
the target variable. Linear regression is a statistical method used for modeling the relation-
ship between a dependent variable (target) and one or more independent variables (features) 
by fitting a linear equation to observed data.

Equation (2-1) can then be expressed as follows:

 

Equation (2-2) is shortened to matrix format as:

where  is a matrix containing one of the flow parameters,  is a matrix containing ra-
tional function constants, and  is a matrix containing pressure coefficients. The  matrix is 
determined by the flow characteristics measured in the wind tunnel. Therefore, the estimation 
of unknown coefficients of rational functions is the goal of this calibration method. The coef-
ficients of rational function is calculated as:
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The calibration procedure was finished once the coefficients of rational function con-
verged. The coefficient values obtained for  and  are shown in the Table 2-2.

Table 2-2: coefficient values of rational functions
Coefficient Value Coefficient Value

-1.7989 -0.2091

11.0255 0.0400

0.0925 -11.0124

-0.1106 0.0975

-0.0045 -0.6957

-0.0103 -0.3676

0.0395 0.0328

0.0528 0.1261

0.0005 0.0367

0.0275

0.0035

2. Result and Analysis
This chapter aims to compare the ANN model’s performance with other existing tech-

niques. The technique being compared is the rational function technique used by Arifianto & 
Farhood. (2015). Three primary parameters, namely the coefficient of determination (r2), mean 
absolute error (MAE), and maximum absolute error (Max AERR), were utilized to evaluate and 
compare the performance of the developed ANN. They are defined as follows:

where  ,  , and  represent the i-th approximated, i-th measured, and the average of 
measured values respectively. N denotes the number of samples.

By employing the rational function, r2 values of 0.9949 and 0.9972 were attained for α 
and β, respectively. In contrast, leveraging the ANN technique yielded r2 values of 0.99925, 
0.99893, and 0.99998 for α, β, and speed, respectively. The notably high r2 values signify an 
excellent correspondence between predicted and measured values. This is visually demon-
strated in Figure 3-1, where the x and y axes represent the desired values for α and β. The 
predicted result is exactly near the desired value.



Indonesian Journal of Aerospace Vol. 22 No. 1 Juni 2024 : pp 57 – 70 (Birry et al.)

68

Figure 3-1 Comparison between the desired and predicted values of α and β

In order to evaluate the prediction accuracy of each technique, we will use statistical pa-
rameters such as MAE, Max AERR, and r2. You can view the comparison results in Table 3-1.

Table 3-1: Comparison of calibration results based on ANN and Rational function

Method Statistical parameter α β RPM

Rational Function

MAE

Max AERR

r2

0.76701

4.255

0.99426

0.54421

1.9846

0.99734

-

-

-

ANN

MAE

Max AERR

r2

0.27050

1.52825

0.99925

0.33260

1.31180

0.99893

1.07475

7.21741

0.99998
The table above shows that the ANN technique with the proposed model produces bet-

ter approximation performance than the rational function. One factor that may improve the 
modeling process is using ANN to directly process the raw pressure data based on α, β, and 
speed. This approach eliminates errors that may occur when converting the pressure data 
into a pressure coefficient, as is typically done with the rational function.

It’s important to keep in mind that creating an ANN model can be time-consuming, es-
pecially when dealing with large amounts of data. Numerous iterations are necessary, which 
can pose a challenge. For instance, determining the optimal number of neurons in a single 
iteration can take up to four hours. This process is repeated for each subsequent search for 
optimal hyperparameters.

3. Conclusions
Based on the conducted research and the comparative analysis of approximation results 

between the ANN and rational function techniques, the following conclusions can be drawn:

1. The ANN technique demonstrates superior accuracy compared to the rational function 
technique for the provided pressure data. The coefficient of determination for the ANN 
technique stands at 0.99925 and 0.99893 for angles α and β, respectively, while the ratio-
nal function technique yields r2 values of 0.99426 and 0.99734 for angles α and β.

2. The implementation of the ANN technique resulted in a noteworthy improvement, with a 
64.7% reduction in MAE values for angle α and a 38.9% reduction for angle β when com-
pared to the rational function technique.
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3. The optimal structure of the ANN model comprises four hidden layers with the following 
number of neurons in each layer: [97, 100, 97, 100]. The SeLu activation function and 
Adam optimizer are employed for optimal performance.
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