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Abstract. Illegal oil mining activities present significant environmental, economic, and 
regulatory challenges, particularly in resource-abundant regions that are difficult to 
monitor such as Musi Banyuasin Regency in South Sumatra. Using high-resolution 
UAV (drone) imagery, this study identified and georeferenced 2,664 illegal shallow oil 
wells from orthomosaic products derived from DJI Phantom 4 Pro flights. Spatial 
autocorrelation analysis yielded a Moran’s I value of 0.652075, indicating statistically 
significant clustering, with concentrations in sub-districts including Lawang Wetan, 
Batang Hari Leko, and Tungkal Jaya. The methodological workflow combined drone-
based remote sensing, visual interpretation, and spatial statistics to detect and evaluate 
the spatial distribution of illegal wells. Ground validation was conducted through direct 
field surveys, which verified the presence of the wells and provided supporting 
photographic documentation and GPS coordinates. The dataset was also compared with 
official records of legal oil wells to ensure accuracy and distinction between legal and 
illegal infrastructure. The findings demonstrate that unmanned aerial vehicle-based 
spatial analysis offers a reliable and scalable solution for monitoring unregulated 
extraction activities. This approach supports data-driven enforcement, enhances 
environmental oversight, and informs the development of more effective regulatory 
policies in regions impacted by informal oil production. 
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1 INTRODUCTION 
 

Illegal oil mining refers to the practice 
of drilling oil wells without the 
necessary permission from the 
authorities (Lioty, 2017). This has led to 
environmental degradation, loss of 
revenue for the government, and safety 
hazards for the individuals involved in 
these activities (Adu et al., 2017; 
Alvizuri-Tintay et al., 2022; Amankwah, 
R., & Anim-Sackey, C., 2021). In Musi 
Banyuasin, illegal oil mining have been 
a long-standing issue, with many 
unregulated operations causing 
environmental damage and posing 
safety risks to nearby communities. The 
lack of oversight and enforcement has 

allowed these wells to proliferate, 
leading to concerns about their impact 
on the local ecosystem and public 
health (Marpaung et al., 2023).  

The presence of these illegal oil wells 
has also led to conflicts between local 
authorities and the operators, as efforts 
to shut down these operations have 
been met with resistance (Crawford & 
Botchwey, 2018). As a result, finding a 
sustainable solution to address this 
issue has become a pressing concern for 
the region (Fingas & Brown, 2017). The 
environmental and safety hazards posed 
by these illegal oil wells cannot be 
ignored, as they have the potential to 
cause long-term damage to the 
ecosystem and harm to nearby 
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communities (Douglas, 2018; Dube et 
al, 2023). It is crucial for authorities to 
prioritize the detection and shutdown of 
these operations in order to protect both 
the environment and public health 
(Putri, 2023). 

The government, both at the central 
and regional levels, is synergizing efforts 
to tackle illegal oil mining. In addition to 
law enforcement, another effort is to 
enhance monitoring and supervision of 
oil drilling activities, both through aerial 
monitoring technology and through 
regular field audits (Prihatmaja et al., 
2021). Information regarding the 
distribution and analysis of the 
potential spread of illegal oil mining is 
necessary because it can enhance the 
understanding of the factors influencing 
the occurrence of illegal oil mining, 
including the potential locations and 
types of natural resources targeted by 
these illegal activities (Palacios et al., 
2023). Determining areas that are 
potentially affected by illegal oil mining 
activities can enhance the ability to 
predict and establish more effective 
preventive measures, thereby improving 
the long-term effectiveness of natural 
resource management, especially in 
optimizing the legal and sustainable use 
of oil resources. 

Remote sensing techniques, such as 
aerial mapping, combined with GIS 
analysis, offer powerful tools for 
identifying unauthorized wells and 
monitoring activities (Sassani et al., 
2025). Aerial mapping can be used for 
detecting illegal oil mining by utilizing 
various remote sensing techniques such 
as passive observation of the land 
surface, infrared sensors, and radar 
technology. Various techniques such as 
passive observation using cameras in 
the visible and infrared spectra, optical 
techniques, and the use of radar can be 
employed for this purpose (Fingas & 
Brown, 2017; Gkountakos et al., 2025). 
Aerial surveillance can provide real-time 
monitoring to validate the detection of 
illegal oil activities (El-Magd et al., 
2020). The use of aerial imagery, 
particularly SAR and SLAR methods, 
along with RGB cameras, offers high-
resolution data acquisition for accurate 
detection and localization of illegal oil 
wells (Gkountakos et al., 2025). 

The primary objective of this study is 
to develop and implement an integrated 
geospatial approach for detecting and 
mapping illegal shallow oil wells in Musi 
Banyuasin Regency, South Sumatra, by 
combining high-resolution drone 
imagery, Geographic Information 
System (GIS) analysis, and field 
validation. This research seeks to 
identify spatial distribution patterns, 
assess clustering tendencies through 
spatial autocorrelation metrics, and 
generate accurate, georeferenced 
datasets that can be cross-verified with 
existing legal well records. By doing so, 
the study aims to provide actionable 
insights that support monitoring, 
enforcement, and policy-making efforts 
to mitigate environmental risks and 
enhance sustainable resource 
management in the region. 

 
2 MATERIALS AND METHODOLOGY 
 
2.1 Study Area 

Musi Banyuasin Regency is located 
in South Sumatra Province and spans 
an area of 14,265.96 km², accounting 
for approximately 15% of the total area 
of South Sumatra Province. The regency 
lies between 1.3° and 4.0° South 
Latitude and 103.0° to 104.75° East 
Longitude. It is bordered by Jambi 
Province to the north, Penukal Abab 
Lematang Ilir Regency to the south, 
Musi Rawas Regency to the west, and 
Banyuasin Regency to the east. 

Musi Banyuasin hosts extensive oil 
and gas infrastructure, both legal and 
illegal. In recent years, the area has 
witnessed a rise in unauthorized 
artisanal oil mining activities, 
particularly in sub-districts such as 
Batang Hari Leko, Babat Toman, and 
Keluang. These activities often involve 
unsafe and unregulated extraction 
practices, leading to serious 
environmental degradation, including oil 
spills, soil contamination, and 
deforestation. 

Figure 2-1 shows the study area. 
This study area was selected due to its 
strategic relevance to the research 
objective, which is the detection and 
spatial mapping of illegal oil mining 
activities using aerial data. The 
combination of persistent oil 
exploitation, availability of historical 



International Journal of Remote Sensing and Earth Sciences Vol. 21  No.2  2024: 186 – 195 

 

188 
 

and field-verified illegal mining sites 
provides a suitable environment for 
testing remote sensing-based detection 
approaches. 

 
Figure 2-1: Study Area 

 
2.2  Data Sources 

This study applies remote sensing 
techniques and spatial analysis 
approach to detect and assess the 
spatial distribution patterns of illegal oil 
mining activities in Musi Banyuasin 
Regency, South Sumatra, Indonesia. 
The methodology consisted of two main 
stages: (1) acquisition and digitization of 
illegal oil well locations using a drone 
platform, and (2) spatial autocorrelation 
analysis to determine the distribution 
patterns of the identified wells. 

Field data acquisition was carried 
out using a DJI Phantom 4 Pro drone 
equipped with a high-resolution camera 
(20 MP, 1-inch CMOS sensor) to capture 
detailed aerial imagery over areas 
suspected of hosting illegal oil mining 
operations. The drone was flown at an 
altitude of 100–120 meters above 
ground level using a grid flight pattern 
with a minimum image overlap of 70% 
to ensure complete coverage and high 
spatial accuracy. The drone flight paths 
were pre-programmed using automated 
waypoint navigation to ensure 
systematic coverage of the study area, 
particularly zones suspected to contain 
a high density of shallow illegal oil wells. 
The flight plan was designed to achieve 
optimal image overlap and consistent 
ground sampling distance, enabling the 
generation of high resolution 
orthomosaics. 

The final orthomosaic products 
were aligned with existing base maps 
and projected in a standard coordinate 
system (e.g., WGS 84 / UTM Zone 48S). 
This spatial alignment allowed for 

precise visual interpretation and 
accurate digitization of surface features. 
The processed imagery served as the 
primary data source for identifying, 
digitizing, and analyzing the spatial 
distribution of illegal oil wells across the 
study area. Figure 2-2 shows the study 
methods. 

All UAV flight activities were 
conducted under valid operational 
authorization issued by the Regency 
Government of Musi Banyuasin, which 
included explicit permission for low-
altitude aerial mapping in the 
designated survey blocks. Prior to field 
deployment, brief on-site coordination 
was carried out with village-level 
representatives and local land managers 
to ensure situational awareness, avoid 
disturbance, and maintain safety 
compliance during data acquisition. 

 

 
Figure 2-2: Study Methods 

 
2.3  Processing Aerial Data 

The aerial imagery captured during 
the drone surveys was stored on 
onboard memory and subsequently 
exported for further processing. Selected 
image frames were processed using 
Agisoft Metashape software to generate 
a seamless orthomosaic through a 
series of photogrammetric steps, 
including image alignment, dense point 
cloud generation, digital surface model 
(DSM) creation, and orthorectification. 
The result was a georeferenced high-
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resolution composite image suitable for 
spatial analysis. 

Following the generation of the 
orthomosaic, manual digitization of 
surface features was conducted using 
ArcGIS software. This process involved 
identifying and delineating the locations 
of existing oil well sites based on visual 
interpretation of surface signatures 
typically associated with illegal oil 
extraction activities. The digitized points 
were compiled into a unified vector 
dataset representing the spatial 
distribution of confirmed oil well 
locations. 

Aerial imagery that lacked embedded 
coordinate references underwent a 
georeferencing process prior to spatial 
analysis. Ground control points (GCPs) 
were established using existing geodetic 
benchmarks located on permanent 
infrastructure within the study area. 
These benchmarks served as reference 
tie points for aligning the imagery to a 
spatial coordinate system. The 
georeferencing process was conducted 
using the Universal Transverse Mercator 
(UTM) coordinate system, enabling 
accurate spatial alignment with other 
geospatial datasets. This spatial 
referencing was essential to ensure that 
the orthomosaic derived from drone 
imagery could be accurately overlaid 
with vector-based thematic layers, such 
as well location data. By anchoring the 
aerial data to a standardized coordinate 
framework, the georeferenced imagery 
became fully integrated into the broader 
geospatial database. 

The resulting orthomosaics had an 
average ground sampling distance 
(GSD) of approximately 3.8 cm/pixel. A 
total of 12 ground control points (GCPs) 
were used, distributed across the 
surveyed blocks to maintain geographic 
balance. Bundle adjustment in Agisoft 
Metashape achieved a georeferencing 
RMSE of 1.6 cm. Camera self-
calibration based on the Metashape 
Brown–Conrady lens distortion model 
was applied during processing to 
optimize the internal orientation 
parameters. These parameters 
collectively indicate that the positional 
accuracy of the mosaics was sufficient 
to reliably digitize individual shallow 
wellheads. 

 

2.4  Processing Spatial Data 
Spatial autocorrelation measures the 

direction and strength of the linear 
relationship between a variable and the 
spatial intensity of the same variable 
across a defined area (Dube & Legros, 
2014; Lee & Wong, 2001). It is a 
fundamental concept in spatial analysis 
that quantifies the degree of correlation 
among spatial data points based on 
their geographic locations (Getis, 2008). 
Spatial autocorrelation is useful for 
identifying the spatial distribution of 
attributes and assessing the 
interconnectivity of phenomena on the 
Earth’s surface (Haining, 2009). 
Specifically, it evaluates the correlation 
among values of a single variable 
referenced by location (Griffith, 2000). 
In spatial autocorrelation analysis, the 
distribution of spatial phenomena is 
generally classified into three categories: 
positive autocorrelation (indicating a 
positive spatial correlation among 
features) (Figure 2-3), negative 
autocorrelation (indicating a negative 
spatial correlation) (Figure (2-4), and 
spatial randomness, where no spatial 
correlation is present (Figure 2-5) 
(Griffith, 2000). 

 

Figure 2-3: Positive Spatial Autocorrelation 
 

 

Figure 2-4: Negative Spatial Autocorrelation 
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Figure 2-5: No Spatial Autocorrelation 

 
Spatial autocorrelation analysis was 

performed using ArcGIS Pro software, 
specifically employing the Spatial 
Statistics Tools under the Analyzing 
Patterns module, with the Spatial 
Autocorrelation (Moran’s I) method. The 
primary input feature class consisted of 
the digitized point data representing the 
distribution of illegal oil wells. The input 
field parameter was defined using the 
distance between individual points, 
serving as a proxy for spatial 
interaction. The processing extent and 
raster analysis boundaries were set 
using the shapefile of Musi Banyuasin 
Regency to constrain the analysis within 
the study area. 

The Moran’s I index can be 
expressed as follows (Chen, 2013): 

 
I = zᵀWz 

 
Where I refers to Moran's I index, z = 

[z₁, z₂, ..., zₙ] is a vector of standardized 
variables (z-scores), W = [wᵢⱼ] is a 
globally normalized, symmetric spatial 
weight matrix of size n × n, and T 
denotes the matrix transpose. This 
equation represents a quadratic form 
commonly used in spatial statistics. 

The spatial weight matrix W 
possesses three key properties: 
(1) Global normalization, where the sum 
of all elements in W equals 1; 
(2) Symmetry, such that Wᵀ = W; 
(3) Non-negativity, meaning all elements 
in W are greater than or equal to zero. 

The standardized variable z has a 
mean of 0 and a standard deviation of 1 
(Chen, 2023). 

Moran’s I Index in ArcGIS ranges 
between -1 and +1, where positive 
values indicate spatial clustering—
suggesting that features are more 

spatially proximate than would be 
expected under a random distribution. 
The closer the Moran’s I value is to +1, 
the stronger the clustering pattern. 
Conversely, negative values indicate a 
dispersed or repelling spatial pattern, 
with values approaching -1 denoting 
stronger dispersion. A value near zero 
suggests spatial randomness, where 
features exhibit no discernible spatial 
pattern. 

In this study, spatial relationships 
were conceptualized using a fixed 
distance band, with the threshold set at 
1,500 meters based on the peak z-score 
method in ArcGIS Pro to ensure that the 
spatial scale aligned with the dominant 
intra-cluster distances observed in the 
digitized data. A global row-
standardized spatial weight matrix was 
applied so that each feature contributed 
proportionally to its neighbors 
regardless of variation in local point 
densities. This threshold distance was 
selected after iteratively evaluating 
alternative distance bands between 
800–2,500 meters, where the 1,500-
meter band produced the highest 
statistically stable z-score and 
minimized sensitivity to edge effects. 
The use of a globally normalized spatial 
weights matrix supports comparability 
across clusters and ensures that the 
Moran’s I inference reflects a consistent 
neighborhood definition across the 
entire Musi Banyuasin study area. 

 
2.5  Validating Data 

To validate the accuracy and 
reliability of the spatial data derived 
from drone-based imagery, an extensive 
ground truthing effort was conducted. 
This process involved systematic field 
verification at a series of georeferenced 
locations that were previously identified 
through visual interpretation of high-
resolution orthomosaic images. Selected 
sites, particularly those with a high 
density of suspected illegal oil wells 
were visited by the research team to 
assess the physical presence, 
operational status, and characteristics 
of the mapped features. The fieldwork 
included the collection of photographic 
evidence, GPS-base coordinate logging, 
and detailed documentation of well 
typologies, surrounding land use, and 
visible signs of recent activity. 
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3   RESULTS AND DISCUSSION 
 
3.1 Aerial Mapping 

The aerial mapping survey, 
conducted using a DJI Phantom 4 Pro 
drone, yielded high-resolution imagery 
that provided a detailed visual record of 
the physical landscape across several 
key areas in Musi Banyuasin Regency 
suspected to harbor illegal oil mining 
activities. The imagery acquisition 
covered a broad swath of terrain, 
including active plantations, secondary 
forests, abandoned industrial zones, 
and remote hinterlands with limited 
road access. In addition to identifying 
individual well points, the imagery also 
revealed associated infrastructure such 
as makeshift access roads, fuel transfer 
points, and temporary worker shelters 
(as shown in Figure 3-1). The visual 
presence of open oil pits and blackened 
vegetation indicated environmental 
degradation resulting from surface spills 
and unregulated waste disposal 
practices. These indicators not only 
confirmed the presence of illegal activity 
but also highlighted the broader 
ecological risks posed by such 
operations.  

Moreover, some of the detected sites 
exhibited clear signs of activity during 
the image capture timeframe, including 
the presence of vehicles, active smoke 
plumes, and visible movement of 
personnel, further confirming their 
operational status. The ability to detect 
such transient indicators in still 
imagery underscores the timeliness and 
operational relevance of drone-based 
surveillance in dynamic and high-risk 
environments. 

The integration of drone-acquired 
imagery with Geographic Information 
System (GIS) tools enabled precise 
georeferencing and facilitated the 
development of a comprehensive spatial 
dataset. Furthermore, the resulting 
spatial information can be seamlessly 
integrated with existing geospatial 
databases of legally registered oil wells 
and supporting infrastructure. For 
instance, spatial comparison with 
official well inventories, such as those 
identified by DY-coded facilities, allows 
for more accurate differentiation 
between legal and illegal operations (as 
shown in Figure 3-2). For comparison 

against legal petroleum infrastructure, 
the DY-coded well inventory was 
obtained from the corporate operational 
GIS database maintained by SKK Migas. 
Because the drone-derived orthomosaics 
and the corporate vector asset layers 
originate from different acquisition 
sources, a positional reconciliation was 
applied to avoid false matches. Co-
registration was performed using a 10-
m radial buffer tolerance to account for 
small misalignments between the 
orthomosaic reference frame and the 
legacy vector well coordinates.  

 

 
(a) Well Points 

 
(b) Access Road 

 
(c) Shelter 

 
(d) Oil Spills 

Figure 3-1: Aerial Imagery of Illegal Oil Mining 
Activities 

 

 
Figure 3-2: Integrated Aerial Mapping 

 
A well was classified as a legal 

facility if a digitized well point 
intersected the buffered legal-well 
footprint. This procedure mitigated 
minor spatial offsets and ensured that 
cross-dataset attribution was based on 
a consistent, operationally defensible 
matching rule. This integrated approach 
not only improves the reliability of 
spatial analysis but also enhances the 
effectiveness of field validation, supports 
enforcement efforts, and informs the 
development of evidence-based policy 
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interventions aimed at regulating 
unauthorized extraction activities. 

 
 

3.2 Spatial Distribution of Illegal Oil 
Wells 
The photogrammetric processing of 

the imagery using Agisoft Metashape 
software resulted in high-fidelity 
orthomosaics and digital surface models 
(DSMs), which served as the primary 
base maps for feature interpretation. 
From these orthomosaics, a total of 
2,664 illegal oil well sites were visually 
identified and digitized based on 
characteristic surface signatures. 
Spatially, the detected wells were 
unevenly distributed, with clear 
concentrations emerging in specific 
geographic clusters.  

The densest occurrences were found 
in the sub-districts of Tungkal Jaya, 
Batang Hari Leko, Babat Toman, Sanga 
Desa, Lawang Wetan, and Plakat Tinggi, 
which are known from previous studies 
and government reports to be hotspots 
of unauthorized hydrocarbon 
exploitation. Several of these clusters 
were located within proximity to 
abandoned legal well sites, suggesting 
the possible repurposing of older 
infrastructure for illicit use. Other 
clusters were detected deep within 
plantation estates or forest edges, often 
inaccessible by vehicle and concealed 
from ground-level observation, which 
underscores the strategic advantage of 
aerial surveillance in revealing hidden 
operations. Figure 3-3 shows the 
distribution of illegal oil wells from 
digitization of aerial mapping. Table 3-1 
shows the number of illegal oil mining 
in each sub-district in Musi Banyuasin. 

 

 
Figure 3-3: Distribution of Illegal Oil Wells 

 

Tabel 3-1: Amount of Illegal Oil Mining 

 
To quantitatively assess the spatial 

pattern, a Global Moran’s I analysis was 
performed in ArcGIS Pro using the 
digitized point dataset as the input 
feature class. The results, presented in 
Table 3-2, yielded a Moran’s I of 
0.652075 with a corresponding z-score of 

2.199 (p = 0.028). These values indicate 
statistically significant positive spatial 
autocorrelation, confirming that illegal 
wells tend to form spatially clustered 
groups rather than occurring randomly 
or being evenly dispersed. 

 
Table 3-2: Moran’s I Index of Illegal Oil Mining 

Distribution 

Global Moran's I Summary 

Moran's Index 0.652075 

Expected Index -0.000376 

Variance 0.000022 

z-score 2.199 

p-value 0.028199 
 

No 
Sub-

district 

Amount 
of Illegal 
Oil Wells 

Area 
(km²) 

Density 
(wells/ 
km²) 

1 
Babat 
Toman 

153 1,291 0.118 

2 
Babat 
Supat 

0 511 0 

3 

Batang 
Hari 
Leko 

426 2,108 0.202 

4 
Bayung 
Lencir 

0 4,847 0 

5 
Jirak 
Jaya 

0 299 0 

6 Keluang 2 400 0.005 
7 Lais 0 755 0 
8 Lalan 0 1,031 0 

9 
Lawang 
Wetan 

1360 232 5.862 

10 
Plakat 
Tinggi 

63 248 0.254 

11 
Sanga 
Desa 

15 317 0.047 

12 Sekayu 0 701 0 

13 
Sungai 
Keruh 

0 329 0 

14 
Sungai 
Lilin 

0 374 0 

15 
Tungkal 

Jaya 
645 821 0.785 

TOTAL 2,664 14,266 0.187 
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The spatial clustering implies that 
certain environmental or socio-economic 
factors may be influencing the 
establishment of illegal wells in specific 
locations. Upon closer inspection of the 
mapped distribution, it became evident 
that the highest concentrations of illegal 
wells were found within the sub-
districts of Lawang Wetan, Tungkal 
Jaya, and Batang Hari Leko. These 
areas are characterized by relatively 
accessible terrain, proximity to former 
legal oil operations, and historical 
precedence of artisanal oil extraction 
practices. In many cases, clusters of 
illegal wells were situated adjacent to or 
within the buffer zones of 
decommissioned oil concessions, 
suggesting a form of opportunistic 
exploitation of legacy infrastructure. 

Moreover, the spatial clustering of 
illegal wells often corresponded with 
areas where enforcement presence is 
limited, road infrastructure is 
fragmented, and oversight mechanisms 
are weak or absent. This spatial 
relationship indicates that beyond 
physical accessibility and geological 
potential, institutional and governance 
factors may play a pivotal role in 
shaping the spatial behavior of illegal oil 
extractors. 

 
 
3.3 Ground Validation. 

The verification process confirmed 
that the vast majority of features 
interpreted as illegal oil wells in the 
imagery corresponded to actual 
installations in the field. In many cases, 
structural elements such as derricks, 
tanks, pipelines, and associated 
equipment were directly observable and 
documented. Additionally, ground 
surveys enabled the distinction between 
active and inactive wells, based on 
indicators such as the presence of 
workers, fresh excavation marks, or oil 
seepage. These findings provided a 
critical layer of qualitative validation to 
support the visual interpretation and 
spatial modeling conducted in the 
earlier stages of analysis. Figure 3-4 
shows the results of the ground 
validation of illegal oil mining in several 
sub-districts. 

 

 
(a) Tungkal Jaya 

 
(b) Batang Hari Leko 

 
(c) Lawang Wetan 

 
(d) Sanga Desa 

 
Figure 3-4: Illegal Oil Mining in Several Sub-

district 

 
The validation exercise 

demonstrated a high level of consistency 
between the drone-derived spatial data 
and field observations, reinforcing the 
methodological rigor of the approach. 
The comprehensive verification and 
documentation process not only 
strengthened the credibility of the 
resulting maps but also highlighted the 
effectiveness of combining remote 
sensing technologies with systematic 
ground-based assessment. This 
integrative strategy provides a replicable 
model for environmental monitoring, 
regulatory enforcement, and spatial 
decision-making in regions affected by 
informal or illegal resource extraction. 

In total, 142 mapped well locations 
were visited during ground validation, 
representing approximately 5.3% of the 
2,664 wells identified in the 
orthomosaics. Sampling followed a 
hotspot-focused stratified strategy, with 
sub-samples drawn from the highest-
density clusters rather than random 
selection, due to practical access 
limitations and safety considerations 
associated with active illegal extraction 
areas. Among the visited locations, 131 
were confirmed as active or abandoned 
illegal wells, resulting in a confirmation 
rate of 92%. Although sampling was not 
spatially uniform, the validation 
coverage included multiple sub-districts 
and cluster typologies, which increases 
confidence that the spatial patterns 
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inferred from the remote-sensing data 
reflect actual on-ground conditions. 

 
4   CONCLUSION 
 

This study demonstrated the 
effectiveness of integrating drone-based 
remote sensing and spatial analysis 
techniques to detect, map, and analyze 
the distribution of illegal shallow oil 
wells in Musi Banyuasin Regency, 
South Sumatra. Through systematic 
aerial surveys using high-resolution 
drone imagery, a total of 2,664 illegal oil 
wells were successfully identified and 
digitized. The spatial distribution 
analysis using Moran’s I index yielded a 
value of 0.652075, indicating a 
statistically significant clustered pattern 
of illegal oil well locations, particularly 
concentrated in subdistricts such as 
Lawang Wetan and Tungkal Jaya. 
Validation through field verification and 
ground truth data confirmed a high 
level of accuracy in the identification 
process, with direct observation, 
photographic documentation, and 
geospatial cross-referencing supporting 
the reliability of the remotely sensed 
data.  

 
ACKNOWLEDGEMENTS 

 
The authors sincerely extend their 

gratitude to the local government of 
Musi Banyuasin Regency for granting 
the necessary research permits and 
providing essential support throughout 
the study. The contributions of the 
drone operation team and GIS analysts 
are deeply acknowledged for their 
meticulous work in capturing and 
processing high-resolution aerial 
imagery. The authors also wish to 
recognize the constructive feedback and 
guidance from colleagues and reviewers, 
which greatly enhanced the clarity, 
depth, and overall quality of this 
research. The language refinement of 
this manuscript was supported in part 
by QuillBot, which assisted in improving 
the grammatical accuracy and 
readability of the text. 

 
REFERENCES 
 
Abou El-Magd, I., Zakzouk, M., 

Abdulaziz, A. M., & Ali, E. M. (2020). 

The Potentiality of Operational 
Mapping of Oil Pollution in the 
Mediterranean Sea near the Entrance 
of the Suez Canal Using Sentinel-1 
SAR Data. Remote Sensing, 12(8), 
1352.https://doi.org/10.3390/rs120
81352 

 
Adu, K. O., Osei, A. A., & Amponsah, S. 

(2017). Factors influencing 
participation in illegal mining in 
Denkyira corridor of Ghana. 
International Journal of Ecological 
Economics and Statistics, 38(3), 78 – 
86 

 
Alvizuri-Tintaya, P. A., Lo-Iacono-

ferreira, V. G., Rios-Ruiz, M., Lora-
Garcia, J., & Torregrosa-López, J. I. 
(2022). Study and Evaluation of 
Surface Water Resources Affected by 
Ancient and Illegal Mining in the 
Upper Part of the Milluni Micro-
Basin, Bolivia. Resources, 11(4). 
https://doi.org/10.3390/resources1
1040036 

 
Amankwah, R., & Anim-Sackey, C. 

(2021). Environmental impact of 
illegal mining activities on 
agricultural productivity in Ghana. 
Environmental Science and Pollution 
Research, 28(4), 4133-4146 

 
Chen, Y. (2013). New approaches for 

calculating Moran’s index of spatial 
autocorrelation. PloS one, 8(7), 
e68336 

 
Crawford, G., & Botchwey, G. (2018). 

Counting the cost of illegal mining in 
Ghana. The Extractive Industries and 
Society, 5(3), 329-335 

 
Douglas, S, I. (2018). Effect of Illegally 

Refined Crude oil (“kpo- fire”) Residue 
on Soil Fungi. 
Int.J.Curr.Microbiol.App.Sci. 7(12): 
3309-3316. 
https://doi.org/10.20546/ijcmas.20
18.712.382 

 
Dubé, J., & Legros, D. (2014). Spatial 

econometrics and the hedonic pricing 
model: what about the temporal 
dimension? Journal of Property 
Research, 31(4), 333–359. 



International Journal of Remote Sensing and Earth Sciences Vol. 21  No.2  2024: 186 – 195 

 

195 
 

https://doi.org/10.1080/09599916.
2014.913655 

 
Dube, T., Dalu, T., Gxokwe, S., & 

Marambanyika, T. (2023). 
Assessment of land use and land 
cover, water nutrient and metal 
concentration related to illegal 
mining activities in an Austral semi–
arid river system: A remote sensing 
and multivariate analysis approach. 
Science of the Total Environment, 
907. https://doi.org/10. 1016/ j. 
scitotenv. 2023.167919 

 
Fingas, M., & Brown, C. E. (2018). A 

Review of Oil Spill Remote Sensing. 
Sensors, 18(1), 91. 
https://doi.org/10.3390/s18010091 

 
Getis, A. (2008). A history of the concept 

of spatial autocorrelation: A 
geographer's perspective. 
Geographical analysis, 40(3), 297-
309 

 
Gkountakos, K., Melitou, M., Ioannidis, 

K., Demestichas, K., Vrochidis, S., & 
Kompatsiaris, I. (2025). LADOS: 
Aerial Imagery Dataset for Oil Spill 
Detection, Classification, and 
Localization Using Semantic 
Segmentation. Data, 10(7), 117. 
https://doi.org/10.3390/data10070
117 

 
Griffith, D. A. (2000). A linear regression 

solution to the spatial autocorrelation 
problem. Journal of Geographical 
Systems, 2, 141-156 

 
Haining, R. P. (2009). Spatial 

autocorrelation and the quantitative 
revolution. Geographical Analysis, 
41(4), 364-374 

 
Lee, J., & Wong, D. W. (2000). 

Statistical Analysis with ArcView GIS. 
Canada: John Wiley. 
http://ci.nii.ac.jp/ncid/BA5376845X 

 
 Lioty, R., Utomo, C., & Pattipeilohy, C. 

(2017). Penanganan Illegal Tapping, 

Illegal Drilling dan Penyelewengan 
Bahan Bakar Minyak (BBM) 
Bersubsidi di Indonesia Tahun 2011-
2015. Journal of International 
Relations Universitas Diponegoro, 
3(4), 96-105. https://doi.org/ 
10.14710/jirud.v3i4.17597 

 
Marpaung, Z., Khairunnisa, T., Widodo, 

S., & Imelda, I. 2023. Impact of 
Illegal Oil Mining: What Should 
Government Do?. Jurnal Kebijakan 
Publik 14(3):288 DOI: 10.31258/ 
jkp.v14i3.8279 

 
Palacios, P., Huaman-Yrigoin, D., 

Laredo-Quispe, H., Garcia-Llontop, 
E., Cunza-Asencios, F., Canales-
Escalante, C., & Teran-Dianderas, C. 
(2023). Satellite Imagery Processing 
using NDVI for the Detection of Illegal 
Mining in Chaspa, Puno - Peru. ACM 
International Conference Proceeding 
Series, 17 – 22. https://doi.org/ 
10.1145/3592307.3592310 

 
Prihatmaja, M. R. R., Hafrida, H., & 

Munandar, T. I. (2021). Penegakan 
Hukum Pidana Terhadap Pelaku 
Penambangan Minyak Tanpa 
Kontrak Kerja Sama. PAMPAS: 
Journal of Criminal Law, 2(1), 57-72. 
https://doi.org/10.22437/pampas.v
2i1.12647 

 
Putri, R. S. (2023). Renegotiating Access 

to Oil: Local Resistance and the 
Power Dynamics in Musi Banyuasin, 
South Sumatra Indonesia. NTNU 
https://hdl.handle.net/11250/3095
906 

 
Sassani, A., Bigdeli, B. & Saghravani, S. 

Detection of illegal wells using 
advanced GIS analysis through 
Landsat 8 and Sentinel-2 image 
fusion in Bastam, Iran. Sci Rep 15, 
6500 (2025). 
https://doi.org/10.1038/s41598-
025-91188-5 

 
 
 

 


