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Abstract. Illegal oil mining activities present significant environmental, economic, and
regulatory challenges, particularly in resource-abundant regions that are difficult to
monitor such as Musi Banyuasin Regency in South Sumatra. Using high-resolution
UAV (drone) imagery, this study identified and georeferenced 2,664 illegal shallow oil
wells from orthomosaic products derived from DJI Phantom 4 Pro flights. Spatial
autocorrelation analysis yielded a Moran’s I value of 0.652075, indicating statistically
significant clustering, with concentrations in sub-districts including Lawang Wetan,
Batang Hari Leko, and Tungkal Jaya. The methodological workflow combined drone-
based remote sensing, visual interpretation, and spatial statistics to detect and evaluate
the spatial distribution of illegal wells. Ground validation was conducted through direct
field surveys, which verified the presence of the wells and provided supporting
photographic documentation and GPS coordinates. The dataset was also compared with
official records of legal oil wells to ensure accuracy and distinction between legal and
illegal infrastructure. The findings demonstrate that unmanned aerial vehicle-based
spatial analysis offers a reliable and scalable solution for monitoring unregulated
extraction activities. This approach supports data-driven enforcement, enhances
environmental oversight, and informs the development of more effective regulatory
policies in regions impacted by informal oil production.

Keywords: illegal oil mining, remote sensing, DJI Phantom 4, spatial analysis, Musi
Banyuasin

1 INTRODUCTION allowed these wells to proliferate,
leading to concerns about their impact

Illegal oil mining refers to the practice
of drilling oil wells without the
necessary permission from the
authorities (Lioty, 2017). This has led to
environmental degradation, loss of
revenue for the government, and safety
hazards for the individuals involved in
these activities (Adu et al., 2017,
Alvizuri-Tintay et al., 2022; Amankwah,
R., & Anim-Sackey, C., 2021). In Musi
Banyuasin, illegal oil mining have been
a long-standing issue, with many
unregulated operations causing
environmental damage and posing
safety risks to nearby communities. The
lack of oversight and enforcement has

on the local ecosystem and public
health (Marpaung et al., 2023).

The presence of these illegal oil wells
has also led to conflicts between local
authorities and the operators, as efforts
to shut down these operations have
been met with resistance (Crawford &
Botchwey, 2018). As a result, finding a
sustainable solution to address this
issue has become a pressing concern for
the region (Fingas & Brown, 2017). The
environmental and safety hazards posed
by these illegal oil wells cannot be
ignored, as they have the potential to
cause long-term damage to the
ecosystem and harm to nearby
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communities (Douglas, 2018; Dube et
al, 2023). It is crucial for authorities to
prioritize the detection and shutdown of
these operations in order to protect both
the environment and public health
(Putri, 2023).

The government, both at the central
and regional levels, is synergizing efforts
to tackle illegal oil mining. In addition to
law enforcement, another effort is to
enhance monitoring and supervision of
oil drilling activities, both through aerial
monitoring technology and through
regular field audits (Prihatmaja et al.,
2021). Information regarding the
distribution and analysis of the
potential spread of illegal oil mining is
necessary because it can enhance the
understanding of the factors influencing
the occurrence of illegal oil mining,
including the potential locations and
types of natural resources targeted by
these illegal activities (Palacios et al.,
2023). Determining areas that are
potentially affected by illegal oil mining
activities can enhance the ability to
predict and establish more effective
preventive measures, thereby improving
the long-term effectiveness of natural
resource management, especially in
optimizing the legal and sustainable use
of oil resources.

Remote sensing techniques, such as
aerial mapping, combined with GIS
analysis, offer powerful tools for
identifying unauthorized wells and
monitoring activities (Sassani et al.,
2025). Aerial mapping can be used for
detecting illegal oil mining by utilizing
various remote sensing techniques such
as passive observation of the land
surface, infrared sensors, and radar
technology. Various techniques such as
passive observation using cameras in
the visible and infrared spectra, optical
techniques, and the use of radar can be
employed for this purpose (Fingas &
Brown, 2017; Gkountakos et al., 2025).
Aerial surveillance can provide real-time
monitoring to validate the detection of
illegal oil activities (ElI-Magd et al.,
2020). The wuse of aerial imagery,
particularly SAR and SLAR methods,
along with RGB cameras, offers high-
resolution data acquisition for accurate
detection and localization of illegal oil
wells (Gkountakos et al., 2025).

The primary objective of this study is
to develop and implement an integrated
geospatial approach for detecting and
mapping illegal shallow oil wells in Musi
Banyuasin Regency, South Sumatra, by
combining high-resolution drone
imagery, Geographic Information
System (GIS) analysis, and field
validation. This research seeks to
identify spatial distribution patterns,
assess clustering tendencies through
spatial autocorrelation metrics, and
generate accurate, georeferenced
datasets that can be cross-verified with
existing legal well records. By doing so,
the study aims to provide actionable
insights that support monitoring,
enforcement, and policy-making efforts
to mitigate environmental risks and
enhance sustainable resource
management in the region.

2 MATERIALS AND METHODOLOGY

2.1 Study Area

Musi Banyuasin Regency is located
in South Sumatra Province and spans
an area of 14,265.96 km? accounting
for approximately 15% of the total area
of South Sumatra Province. The regency
lies between 1.3° and 4.0° South
Latitude and 103.0° to 104.75° East
Longitude. It is bordered by Jambi
Province to the north, Penukal Abab
Lematang Ilir Regency to the south,
Musi Rawas Regency to the west, and
Banyuasin Regency to the east.

Musi Banyuasin hosts extensive oil
and gas infrastructure, both legal and
illegal. In recent years, the area has
witnessed a rise in unauthorized
artisanal oil mining activities,
particularly in sub-districts such as
Batang Hari Leko, Babat Toman, and
Keluang. These activities often involve
unsafe and unregulated extraction
practices, leading to serious
environmental degradation, including oil
spills, soil contamination, and
deforestation.

Figure 2-1 shows the study area.
This study area was selected due to its
strategic relevance to the research
objective, which is the detection and
spatial mapping of illegal oil mining
activities using aerial data. The
combination of persistent oil
exploitation, availability of historical
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and field-verified illegal mining sites
provides a suitable environment for
testing remote sensing-based detection
approaches.
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Figure 2-1: Study Area

2.2 Data Sources

This study applies remote sensing
techniques and  spatial analysis
approach to detect and assess the
spatial distribution patterns of illegal oil
mining activities in Musi Banyuasin
Regency, South Sumatra, Indonesia.
The methodology consisted of two main
stages: (1) acquisition and digitization of
illegal oil well locations using a drone
platform, and (2) spatial autocorrelation
analysis to determine the distribution
patterns of the identified wells.

Field data acquisition was carried
out using a DJI Phantom 4 Pro drone
equipped with a high-resolution camera
(20 MP, 1-inch CMOS sensor) to capture
detailed aerial imagery over areas
suspected of hosting illegal oil mining
operations. The drone was flown at an
altitude of 100-120 meters above
ground level using a grid flight pattern
with a minimum image overlap of 70%
to ensure complete coverage and high
spatial accuracy. The drone flight paths
were pre-programmed using automated
waypoint navigation to ensure
systematic coverage of the study area,
particularly zones suspected to contain
a high density of shallow illegal oil wells.
The flight plan was designed to achieve
optimal image overlap and consistent
ground sampling distance, enabling the
generation of high resolution
orthomosaics.

The final orthomosaic products
were aligned with existing base maps
and projected in a standard coordinate
system (e.g., WGS 84 / UTM Zone 48S).
This spatial alignment allowed for

precise visual interpretation and
accurate digitization of surface features.
The processed imagery served as the
primary data source for identifying,
digitizing, and analyzing the spatial
distribution of illegal oil wells across the
study area. Figure 2-2 shows the study
methods.

All UAV flight activities were
conducted under valid operational
authorization issued by the Regency
Government of Musi Banyuasin, which
included explicit permission for low-
altitude aerial mapping in the
designated survey blocks. Prior to field
deployment, brief on-site coordination
was carried out with village-level
representatives and local land managers
to ensure situational awareness, avoid
disturbance, and maintain safety
compliance during data acquisition.

Preliminary Study and Location Determination
Identification of areas prone to illegal oil wells (Musi Banyuasin)
Literature review and historical report analysis

l

Aerial Data Acquisition
Preparation of drone mission (DJI Phantom 4 Pro)
Flight path planning
Aerial image capture in the target area

l

Drone Imagery Processing
Orthomosaic and DSM processing using Agisoft Metashape
Geometric correction and image mosaicking
Georeferencing using GCP and UTM 48S projection

l

Visual Interpretation
Identification of visual indicators of illegal oil wells
Manual digitization of well locations in ArcGIS

l

Spatial Analysis
Spatial Autocorrelation Analysis (Global Moran’s 1)
Input: illegal oil well points (feature class)
Output: Moran’s [ value, z-score, p-value

I}

Result Interpretation and Mapping
Identification of distribution patterns (clustering, outliers)

Figure 2-2: Study Methods

2.3 Processing Aerial Data

The aerial imagery captured during
the drone surveys was stored on
onboard memory and subsequently
exported for further processing. Selected
image frames were processed using
Agisoft Metashape software to generate
a seamless orthomosaic through a
series of photogrammetric steps,
including image alignment, dense point
cloud generation, digital surface model
(DSM) creation, and orthorectification.
The result was a georeferenced high-
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resolution composite image suitable for
spatial analysis.

Following the generation of the
orthomosaic, manual digitization of
surface features was conducted using
ArcGIS software. This process involved
identifying and delineating the locations
of existing oil well sites based on visual
interpretation of surface signatures
typically associated with illegal oil
extraction activities. The digitized points
were compiled into a unified vector
dataset  representing the  spatial
distribution of confirmed oil well
locations.

Aerial imagery that lacked embedded
coordinate references underwent a
georeferencing process prior to spatial
analysis. Ground control points (GCPs)
were established using existing geodetic
benchmarks located on permanent
infrastructure within the study area.
These benchmarks served as reference
tie points for aligning the imagery to a
spatial coordinate system. The
georeferencing process was conducted
using the Universal Transverse Mercator
(UTM) coordinate system, enabling
accurate spatial alignment with other
geospatial  datasets. This  spatial
referencing was essential to ensure that
the orthomosaic derived from drone
imagery could be accurately overlaid
with vector-based thematic layers, such
as well location data. By anchoring the
aerial data to a standardized coordinate
framework, the georeferenced imagery
became fully integrated into the broader
geospatial database.

The resulting orthomosaics had an
average ground sampling distance
(GSD) of approximately 3.8 cm/pixel. A
total of 12 ground control points (GCPs)
were used, distributed across the
surveyed blocks to maintain geographic
balance. Bundle adjustment in Agisoft
Metashape achieved a georeferencing
RMSE of 1.6 cm. Camera self-
calibration based on the Metashape
Brown—-Conrady lens distortion model
was applied during processing to
optimize the internal orientation
parameters. These parameters
collectively indicate that the positional
accuracy of the mosaics was sufficient
to reliably digitize individual shallow
wellheads.

2.4 Processing Spatial Data

Spatial autocorrelation measures the
direction and strength of the linear
relationship between a variable and the
spatial intensity of the same variable
across a defined area (Dube & Legros,
2014; Lee & Wong, 2001). It is a
fundamental concept in spatial analysis
that quantifies the degree of correlation
among spatial data points based on
their geographic locations (Getis, 2008).
Spatial autocorrelation is useful for
identifying the spatial distribution of
attributes and assessing the
interconnectivity of phenomena on the
Earth’s  surface (Haining, 2009).
Specifically, it evaluates the correlation
among values of a single variable
referenced by location (Griffith, 2000).
In spatial autocorrelation analysis, the
distribution of spatial phenomena is
generally classified into three categories:
positive autocorrelation (indicating a
positive  spatial correlation among
features) (Figure 2-3), negative
autocorrelation (indicating a negative
spatial correlation) (Figure (2-4), and
spatial randomness, where no spatial
correlation is present (Figure 2-5)
(Griffith, 2000).
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Figure 2-4: Negative Spatial Autocorrelation
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Figure 2-5: No Spatial Autocorrelation

Spatial autocorrelation analysis was
performed using ArcGIS Pro software,
specifically employing the Spatial
Statistics Tools under the Analyzing
Patterns module, with the Spatial
Autocorrelation (Moran’s I) method. The
primary input feature class consisted of
the digitized point data representing the
distribution of illegal oil wells. The input
field parameter was defined using the
distance between individual points,
serving as a proxy for spatial
interaction. The processing extent and
raster analysis boundaries were set
using the shapefile of Musi Banyuasin
Regency to constrain the analysis within
the study area.

The Moran’s [ index can be
expressed as follows (Chen, 2013):

I =2TWz

Where I refers to Moran's I index, z =
[z1, Z2, ..., Zn] iS a vector of standardized
variables (z-scores), W = [w;] is a
globally normalized, symmetric spatial
weight matrix of size n x n, and T
denotes the matrix transpose. This
equation represents a quadratic form
commonly used in spatial statistics.

The spatial weight matrix W
possesses three key properties:

(1) Global normalization, where the sum
of all elements in W equals 1;

(2) Symmetry, such that WT = W;

(3) Non-negativity, meaning all elements
in W are greater than or equal to zero.

The standardized variable z has a
mean of O and a standard deviation of 1
(Chen, 2023).

Moran’s I Index in ArcGIS ranges
between -1 and +1, where positive
values indicate spatial clustering—
suggesting that features are more

spatially proximate than would be
expected under a random distribution.
The closer the Moran’s I value is to +1,
the stronger the clustering pattern.
Conversely, negative values indicate a
dispersed or repelling spatial pattern,
with values approaching -1 denoting
stronger dispersion. A value near zero
suggests spatial randomness, where
features exhibit no discernible spatial
pattern.

In this study, spatial relationships
were conceptualized using a fixed
distance band, with the threshold set at
1,500 meters based on the peak z-score
method in ArcGIS Pro to ensure that the
spatial scale aligned with the dominant
intra-cluster distances observed in the
digitized data. A global row-
standardized spatial weight matrix was
applied so that each feature contributed
proportionally to its neighbors
regardless of variation in local point
densities. This threshold distance was
selected after iteratively evaluating
alternative distance bands between
800-2,500 meters, where the 1,500-
meter band produced the highest
statistically stable zZ-score and
minimized sensitivity to edge effects.
The use of a globally normalized spatial
weights matrix supports comparability
across clusters and ensures that the
Moran’s I inference reflects a consistent
neighborhood definition across the
entire Musi Banyuasin study area.

2.5 Validating Data

To validate the accuracy and
reliability of the spatial data derived
from drone-based imagery, an extensive
ground truthing effort was conducted.
This process involved systematic field
verification at a series of georeferenced
locations that were previously identified
through visual interpretation of high-
resolution orthomosaic images. Selected
sites, particularly those with a high
density of suspected illegal oil wells
were visited by the research team to
assess the physical presence,
operational status, and characteristics
of the mapped features. The fieldwork
included the collection of photographic
evidence, GPS-base coordinate logging,
and detailed documentation of well
typologies, surrounding land use, and
visible signs of recent activity.
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3 RESULTS AND DISCUSSION

3.1 Aerial Mapping

The aerial  mapping survey,
conducted using a DJI Phantom 4 Pro
drone, yielded high-resolution imagery
that provided a detailed visual record of
the physical landscape across several
key areas in Musi Banyuasin Regency
suspected to harbor illegal oil mining
activities. The imagery acquisition
covered a broad swath of terrain,
including active plantations, secondary
forests, abandoned industrial zones,
and remote hinterlands with limited
road access. In addition to identifying
individual well points, the imagery also
revealed associated infrastructure such
as makeshift access roads, fuel transfer
points, and temporary worker shelters
(as shown in Figure 3-1). The visual
presence of open oil pits and blackened
vegetation indicated environmental
degradation resulting from surface spills
and unregulated waste  disposal
practices. These indicators not only
confirmed the presence of illegal activity
but also highlighted the broader
ecological risks posed by such
operations.

Moreover, some of the detected sites
exhibited clear signs of activity during
the image capture timeframe, including
the presence of vehicles, active smoke
plumes, and visible movement of
personnel, further confirming their
operational status. The ability to detect
such transient indicators in still
imagery underscores the timeliness and
operational relevance of drone-based
surveillance in dynamic and high-risk
environments.

The integration of drone-acquired
imagery with Geographic Information
System (GIS) tools enabled precise
georeferencing and facilitated the
development of a comprehensive spatial
dataset. Furthermore, the resulting
spatial information can be seamlessly
integrated with existing geospatial
databases of legally registered oil wells
and supporting infrastructure. For
instance, spatial comparison with
official well inventories, such as those
identified by DY-coded facilities, allows
for more accurate differentiation
between legal and illegal operations (as
shown in Figure 3-2). For comparison

against legal petroleum infrastructure,
the DY-coded well inventory was
obtained from the corporate operational
GIS database maintained by SKK Migas.
Because the drone-derived orthomosaics
and the corporate vector asset layers
originate from different acquisition
sources, a positional reconciliation was
applied to avoid false matches. Co-
registration was performed using a 10-
m radial buffer tolerance to account for
small misalignments between the
orthomosaic reference frame and the
legacy vector well coordinates.

(c) Shelter (d) Oil Spills

Figure 3-1: Aerial Imagery of Illegal Oil Mining
Activities

Figure 3-2: Integrated Aerial Mapping

A well was classified as a legal
facility if a digitized well point
intersected the Dbuffered legal-well
footprint. This procedure mitigated
minor spatial offsets and ensured that
cross-dataset attribution was based on
a consistent, operationally defensible
matching rule. This integrated approach
not only improves the reliability of
spatial analysis but also enhances the
effectiveness of field validation, supports
enforcement efforts, and informs the
development of evidence-based policy
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interventions aimed at regulating
unauthorized extraction activities.

3.2 Spatial Distribution of Illegal Oil

Wells

The photogrammetric processing of
the imagery using Agisoft Metashape
software resulted in  high-fidelity
orthomosaics and digital surface models
(DSMs), which served as the primary
base maps for feature interpretation.
From these orthomosaics, a total of
2,064 illegal oil well sites were visually
identified and digitized based on
characteristic surface signatures.
Spatially, the detected wells were
unevenly  distributed, with clear
concentrations emerging in specific
geographic clusters.

The densest occurrences were found
in the sub-districts of Tungkal Jaya,
Batang Hari Leko, Babat Toman, Sanga
Desa, Lawang Wetan, and Plakat Tinggi,
which are known from previous studies
and government reports to be hotspots
of unauthorized hydrocarbon
exploitation. Several of these clusters
were located within proximity to
abandoned legal well sites, suggesting
the possible repurposing of older
infrastructure for illicit use. Other
clusters were detected deep within
plantation estates or forest edges, often
inaccessible by vehicle and concealed
from ground-level observation, which
underscores the strategic advantage of
aerial surveillance in revealing hidden
operations. Figure 3-3 shows the
distribution of illegal oil wells from
digitization of aerial mapping. Table 3-1
shows the number of illegal oil mining
in each sub-district in Musi Banyuasin.

Tabel 3-1: Amount of Illegal Oil Mining

Amount Density
No dlss::'gl::: ¢ of Illegal ([l\:ll'::) (wells/
0Oil Wells km?)
Babat 153 1,291 0.118
1 Toman
Babat 0 511 0]
2 Supat
Batang 426 2,108 0.202
Hari
3 Leko
Bayung 0 4,847 0
4 Lencir
Jirak 0 299 0
S Jaya
6 Keluang 2 400 0.005
7 Lais 0 755 0
8 Lalan 0 1,031 0
Lawang 1360 232 5.862
9 Wetan
Plakat 63 248 0.254
10 Tinggi
Sanga 15 317 0.047
11 Desa
12 Sekayu 0 701 0
Sungai 0 329 0
13  Keruh
Sungai 0 374 0
14 Lilin
Tungkal 645 821 0.785
15 Jaya
TOTAL 2,664 14,266 0.187
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Figure 3-3: Distribution of lllegal Oil Wells

To quantitatively assess the spatial
pattern, a Global Moran’s I analysis was
performed in ArcGIS Pro using the
digitized point dataset as the input
feature class. The results, presented in
Table 3-2, yielded a Moran’s I of
0.652075 with a corresponding z-score of
2.199 (p = 0.028). These values indicate
statistically significant positive spatial
autocorrelation, confirming that illegal
wells tend to form spatially clustered
groups rather than occurring randomly
or being evenly dispersed.

Table 3-2: Moran’s I Index of Illegal Oil Mining
Distribution

Global Moran's I Summary

Moran's Index 0.652075
Expected Index -0.000376
Variance 0.000022
Z-score 2.199
p-value 0.028199
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The spatial clustering implies that
certain environmental or socio-economic
factors may be influencing the
establishment of illegal wells in specific
locations. Upon closer inspection of the
mapped distribution, it became evident
that the highest concentrations of illegal
wells were found within the sub-
districts of Lawang Wetan, Tungkal
Jaya, and Batang Hari Leko. These
areas are characterized by relatively
accessible terrain, proximity to former
legal o0il operations, and historical
precedence of artisanal oil extraction
practices. In many cases, clusters of
illegal wells were situated adjacent to or
within the buffer zones of
decommissioned oil concessions,
suggesting a form of opportunistic
exploitation of legacy infrastructure.

Moreover, the spatial clustering of
illegal wells often corresponded with
areas where enforcement presence is
limited, road infrastructure is
fragmented, and oversight mechanisms
are weak or absent. This spatial
relationship indicates that beyond
physical accessibility and geological
potential, institutional and governance
factors may play a pivotal role in
shaping the spatial behavior of illegal oil
extractors.

3.3 Ground Validation.

The verification process confirmed
that the vast majority of features
interpreted as illegal oil wells in the
imagery  corresponded to  actual
installations in the field. In many cases,
structural elements such as derricks,
tanks, pipelines, and  associated
equipment were directly observable and
documented. Additionally, ground
surveys enabled the distinction between
active and inactive wells, based on
indicators such as the presence of
workers, fresh excavation marks, or oil
seepage. These findings provided a
critical layer of qualitative validation to
support the visual interpretation and
spatial modeling conducted in the
earlier stages of analysis. Figure 3-4
shows the results of the ground
validation of illegal oil mining in several
sub-districts.

(¢) Lawang Wetan (d) Sanga Desa

Figure 3-4: Illegal Oil Mining in Several Sub-
district

The validation exercise
demonstrated a high level of consistency
between the drone-derived spatial data
and field observations, reinforcing the
methodological rigor of the approach.
The comprehensive verification and
documentation  process not only
strengthened the credibility of the
resulting maps but also highlighted the
effectiveness of combining remote
sensing technologies with systematic
ground-based assessment. This
integrative strategy provides a replicable
model for environmental monitoring,
regulatory enforcement, and spatial
decision-making in regions affected by
informal or illegal resource extraction.

In total, 142 mapped well locations
were visited during ground validation,
representing approximately 5.3% of the
2,664 wells identified in the
orthomosaics. Sampling followed a
hotspot-focused stratified strategy, with
sub-samples drawn from the highest-
density clusters rather than random
selection, due to practical access
limitations and safety considerations
associated with active illegal extraction
areas. Among the visited locations, 131
were confirmed as active or abandoned
illegal wells, resulting in a confirmation
rate of 92%. Although sampling was not
spatially  uniform, the validation
coverage included multiple sub-districts
and cluster typologies, which increases
confidence that the spatial patterns
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inferred from the remote-sensing data
reflect actual on-ground conditions.

4 CONCLUSION

This study demonstrated the
effectiveness of integrating drone-based
remote sensing and spatial analysis
techniques to detect, map, and analyze
the distribution of illegal shallow oil
wells in Musi Banyuasin Regency,
South Sumatra. Through systematic
aerial surveys wusing high-resolution
drone imagery, a total of 2,664 illegal oil
wells were successfully identified and
digitized. @The spatial distribution
analysis using Moran’s I index yielded a
value of 0.652075, indicating a
statistically significant clustered pattern
of illegal oil well locations, particularly
concentrated in subdistricts such as
Lawang Wetan and Tungkal Jaya.
Validation through field verification and
ground truth data confirmed a high
level of accuracy in the identification
process, with direct observation,
photographic documentation, and
geospatial cross-referencing supporting
the reliability of the remotely sensed
data.
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