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Abstract. Mangrove forests play an essential role in maintaining the stability of coastal
ecosystems by providing habitat for various species, protecting shorelines, and as a carbon
source. The presence of mangrove areas can be monitored using land-cover information
derived from remote sensing data using the Random Forest (RF) classification method,
enabling practical ecosystem assessment and management. This study aims to develop
and evaluate an RF classification model to produce accurate spatial information about
mangrove canopy cover. The study area, Benoa Bay in Bali, Indonesia, is known for its
dynamic and ecologically complex mangrove habitat. Inputs for the RF classification are
bands on Sentinel-2A satellite imagery, Mangrove Vegetation Index (MVI), Normalized
Difference Vegetation Index (NDVI), Enhanced Mangrove Index (EMI), Modified Normalized
Difference Water Index (MNDWI), Normalized Difference Moisture Index (NDMI), and
Normalized Difference Salinity Index (NDSall), along with topographic variables such as
elevation and slope with two treatments namely RF with DEM + Slope (DS) and RF without
DEM + Slope (wDS). Model validation was conducted using high-resolution imagery from
Google Earth Pro and the 2024 National Mangrove Map. Coastal land cover classification
was divided into water, mangrove, open land, built-up land, and non-mangrove vegetation.
In general, the results of RF classification with different treatments (DS, wDS) had very
high accuracy, as evidenced by Overall Accuracy exceeding 90% and a Kappa value
exceeding 90%, indicating the model's consistency and reliability in capturing spatial
variations in land cover. Similarly, the accuracy of mangrove canopy cover classification
based on the national mangrove map was more than 90% and the kappa value was more
than 80%. These findings demonstrate the robustness of the RF model and its potential to
support data-driven coastal management practices.
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1 INTRODUCTION adaptable for processing complex datasets

Random Forest (RF) is a widely used
ensemble classifier that builds multiple
decision trees to enhance prediction
stability and reliability, particularly in
spatial and remote sensing contexts.
Unlike parametric methods, RF does not
require assumptions about the underlying
data distribution, which makes it highly

such as satellite imagery with diverse
spectral and spatial characteristics (Belgiu
& Dragut, 2016; Biau & Scornet, 2016;
Immitzer et al., 2012). This algorithm
consistently achieves higher classification
accuracy in land cover studies, especially
when augmented with multi-temporal and
textural variables, yielding accuracy
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improvements ranging from 10% to 30% in
specific land cover types (Breiman, 2001;
Elmahdy et al., 2020; Nandika et al., 2023;
Rodriguez-Galiano et al., 2012).

RF is well-regarded for its ability to
manage multicollinearity and effectively
process large, high-dimensional datasets.
In addition, it offers internal measures of
predictor significance, which are
frequently applied in feature selection
processes within spatial modeling tasks
(Belgiu & Dragut, 2016). Given these
capabilities, RF holds strong promise for
enhancing the accuracy of spatial mapping
applications, including mangrove canopy
cover classification.

RF has become a widely adopted
approach for mapping mangrove
distribution using multispectral satellite
imagery, largely due to its classification
accuracy and computational efficiency.
One of RF's advantages is its compatibility
with cloud-based platforms such as Google
Earth Engine (GEE), which facilitates rapid
and scalable remote sensing analysis over
large areas. For example, a research in
Hara, Iran, utilizing combined Sentinel-1
and Sentinel-2 data, reported that RF
achieved an overall accuracy of 93.23%
and a Kappa coefficient of 0.92 when
distinguishing mangrove, tidal flats, and
open water (Giri, 2023). Similarly, research
conducted in Pakistan used RF within the
GEE environment to assess mangrove
cover changes from 1990 to 2020,
achieving over 90% accuracy with Landsat
30 m imagery (Gilani et al., 2021).
Moreover, RF has consistently
outperformed alternative classifiers, such
as kernel logistic regression and Naive
Bayes, in global-scale mangrove mapping
efforts, with reported F1 scores exceeding
0.90 in multiple studies wusing both
medium- and  high-resolution data
(Elmahdy et al., 2020).

Accurate mapping of mangrove canopy
cover is essential for understanding the

spatial  distribution and  structural
complexity of coastal vegetation. Mangrove
ecosystems serve crucial ecological,
economic, and social functions,

particularly due to their role as highly
efficient carbon sinks. Studies have shown
that mangroves can store carbon at levels
three to five times greater than most
terrestrial forest types (Donato et al., 2011;
Kauffman et al., 2020; Murdiyarso et al.,
2015; Tomlinson, 2016). A significant

portion of this carbon—up to 77.9%—is
found within mangrove biomass
components such as tree trunks, foliage,
and sediment layers (Bachmid et al., 2018).

Globally, the estimated average carbon
stock in mangrove ecosystems is
approximately 1,023 Mg C/ha (Donato et
al., 2011), while Indonesia’s mangroves
store an average of about 891.70 tons per
hectare. The total potential carbon stock
across Indonesian mangroves is estimated
at 2.89 Tt C (Wahyudi et al., 2018). In the
context of carbon financing, this surplus
represents a  valuable  opportunity:
Indonesian mangroves could contribute up
to 3.14 PgC, equivalent to approximately
Rp 220 trillion, assuming a carbon market
price of US$5 per ton. (Murdiyarso et al.,
2015). From an economic perspective, the
annual ecosystem service value of
mangrove forests is estimated to exceed
US$50,000 per hectare for local coastal
communities (Mukherjee et al., 2014).

The ability of mangroves to sequester
and store carbon significantly contributes
to the fulfillment of Sustainable
Development Goal (SDG) 13, which
focuses on Climate Action. Beyond their
climate mitigation potential, mangroves
offer a wide array of ecosystem services
that align with multiple other SDGs. These
include their contributions to poverty
reduction (SDG 1), food security (SDG 2),
access to clean water (SDG 6), promotion
of sustainable livelihoods (SDG §),
resilience in coastal urban areas (SDG 11),
marine ecosystem health (SDG 14), and
the protection of terrestrial ecosystems
(SDG 15) (Anggraeni, 2024; Friess et al.,
2019; Gong et al., 2024; Sasmito et al.,
2023).

Benoa Bay, located in Bali, Indonesia,
has a mangrove forest of approximately
1,373.50 hectares (As-syakur et al., 2025;
Yastika et al., 2019). This area lies in close
proximity to dense human activities,
including residential neighborhoods,
industrial facilities, airport infrastructure,
commercial zones, and reclaimed coastal
lands, placing it under constant
environmental pressure (Sugianthi et al.,
2007). As such, consistent monitoring is
essential to support long-term mangrove
ecosystem sustainability.

The use of Sentinel-2A satellite imagery
has proven effective for detecting mangrove
cover due to its high temporal and spatial
resolution. The satellite captures imagery
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at resolutions of 10, 20, and 60 meters
across various multispectral bands, along
with a 10-meter panchromatic band and a
revisit frequency of every five days.
Sentinel-2A includes 13 spectral bands
that cover the visible, NIR, and SWIR
regions of the electromagnetic spectrum
(ESA, 2025). This wide spectral range,
when combined with suitable classification

techniques, enables the extraction of
detailed and reliable land cover
information.

This research aims to develop and
evaluate a RF classification model to
produce accurate spatial information on
mangrove canopy cover, thereby
supporting sustainable coastal
management. The research gap in this
study is the challenge of mangrove canopy
classification, which is often hindered by
spectral overlap with other coastal
vegetation. Therefore, an adaptive and
robust machine learning approach, such
as RF, that combines multi-source data
with relevant spectral and textural
features is required. RF has weaknesses in
classifying high-resolution data with
complex spectral and spatial features, as it
can be challenging to separate similar
features in such datasets (Breiman, 2001).
Furthermore, multi-temporal mangrove
cover detection requires careful attention,
as mangrove sites differ from terrestrial
vegetation and are strongly influenced by
tides. Determining balanced training
samples for each land cover class is
necessary to reduce class imbalance and
spatial leakage caused by the inclusion of
training areas during testing. Therefore,
attention and precision are required when
determining the location of the training
area to produce accurate information.

2 MATERIALS AND METHODOLOGY
2.1 Location and Data

This research was carried out in the
mangrove ecosystem of Benoa Bay, located
in southern Bali, Indonesia, within the
geographic coordinates of 08°41'-08°47' S
and 115°10'-115°15" E (Figure 2-1). The
area extends across both Badung Regency
and Denpasar City, covering several
coastal villages, namely Sesetan, Pemogan,
Serangan, and Sidakarya (As-syakur et al.,
2025; Danaparamita, 2020; Loviasari et al.,
2017). Geomorphologically, Benoa Bay is a
semi-enclosed estuarine environment,
shaped by the interaction of river

systems—particularly the Badung and
Mati rivers—and heavily influenced by
surrounding human activities, including
port operations and tourism development
(As-syakur et al., 2025). The region falls
within a tropical monsoon climate zone,
receiving an average annual rainfall of
approximately 1,803 mm. Air
temperatures typically range between
24.0°C and 27.5°C throughout the year,
with an annual mean of about 27.6 °C.
Relative humidity levels tend to fluctuate
between 80% and 85%, while the peak of
the rainy season occurs during December
and January, during which monthly
precipitation may reach 250-296 mm (As-
syakur et al., 2025; Bali (Denpasar)
Climate (Indonesia): Data and Graphs for
Weather & Climate In Bali (Denpasar),
2025).

The data used in this study are a mosaic
of Sentinel 2A Surface Reflectance images
for the period January - December 2024,
provided by the European Space Agency
(ESA), with atmospheric correction already
applied. Sentinel-2 offers 13 spectral
bands, captured at spatial resolutions of
10, 20, and 60 meters, and revisits the
same location every 5 to 7 days (Table 2-1)
(ESA, 2025). This combination of high
spectral and temporal resolution makes it
particularly  suitable for  vegetation
monitoring in dynamic coastal ecosystems.
In addition to wutilizing satellite-derived
imagery, this research used the 2024
National = Mangrove Map—issued by
(Ministry of Forestry, 2025)—as an
external reference to validate the accuracy
of mangrove canopy cover derived from the
RF classification.

°E 5.200°

TiemaT 152007 13200 115.11 115.200°% 115.220°} E =S
Figure 2-1: Benoa Bay Bali, Indonesia

Table 2-1: Sentinel-2A Data Specifications
(Esa, 2025)

Resolusi Spektral (nm) Resolusi
Spasial
B2: Blue (~493 nm) 10

B3: Green (~560 nm)
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B4: Red (~665 nm)
B8: NIR (~833)
B5: Vegetation Red Edge 20
(~704nm)
B6: Vegetation Red Edge
(~740nm)
B7: Vegetation Red Edge
(~783nm)
B8A: Vegetation Red Edge
(~865nm)
B11: SWIR (~1610nm)
B12: SWIR dan (~2190nm)
B1: Coastal Aerosol (~443nm) 60
B9: Water Vapour (~945 nm)
B10: Cirrus band (~1374 nm)

This study also used a 30 m resolution
SRTM (Shuttle Radar Topography Mission)
Digital Elevation Model (DEM) from NASA,
which provides elevation and slope
information used as boundary data to
determine mangrove growth locations.
Alongi (2002) and Komiyama et al. (2008)
state that mangroves grow on land at
elevations of 0-5 m above sea level. In
addition, data from the 2024 National
Mangrove Map of the Ministry of Forestry
were used as accuracy test data for the
mangrove information derived from the
classification process.

2.2 Methods

The methodological workflow in this
research consists of four main stages:
data acquisition and preprocessing,
sample area definition, RF classification,
and accuracy evaluation. All data-related
processes were conducted using the cloud-
based GEE platform.

1) Data Acquisition and Preprocessing:
Sentinel-2A imagery was filtered to
minimize cloud contamination by applying
cloud masking based on the Quality
Assessment (QA) band available in GEE,
ensuring optimal imagery for analysis.
Cloud separation is performed to obtain
image data under minimal cloud
conditions wusing Cloud Probability in
Sentinel-2 (Sen2Cor) on the GEE platform.
The Sen2Cor method uses QA60 band to
identify cloud-affected pixels based on the
value in the 10th bit. Pixels with a value of
1 in the 10th bit are identified as clouds
and cloud shadows, while a value of O is
identified as cloud-free pixels.

2) Sample Selection: The number of
samples was determined using the Slovin
method, which is calculated based on the

number of pixels in the image data. The
stratified spatial split method was also
used to prevent spatial leakage, dividing
the data into 70% for modeling and 30%
for accuracy testing, as reported by
Nandika et al. (2023). The research
location had 1,351,322 pixels, and with an
a value of 0.5, the minimum number of
samples required was 400 pixels. In this
study, the number of training samples was
10,406, and the number for accuracy
testing was 4,354. The training area for RF
classification was 105, evenly distributed
across the research location (Table 2-2).

Table 2-2. Number of Training Area Polygons
Training Area Number of

Poligons
Water 30
Mangrove 32
Open land 13
Build up 11
Non Mangrove Vegetation 19

3) RF Classification: Input features for
the RF classifier included selected spectral
bands from Sentinel-2A (Blue, Green, Red,
Red Edge bands 5, 6, 7, NIR, and SWIR
bands 11 and 12), as well as several
mangrove-related spectral indices: MVI,
NDVI, EMI, MNDWI, NDMI, and NDSall
(Table 2-3). The features used in this RF
include vegetation spectral reflectance,
canopy structure, water content, relevant
thermal-mineral conditions in the
mangrove ecosystem in the intertidal zone,
canopy humidity, salinity, water bodies,
and settlements, so that it can separate
mangroves from other land covers.

RF classification uses 200 trees with
Variable presplit: 6, Meanleaf population:
5, Bag fraction: 0.7, Max nodes: 500. The
RF classification process is carried out
using two treatments, namely using DEM
+ Slope (DS), and without using DEM +
Slope (wDS). The results of the RF
classification will be classified into water
bodies, mangroves, open land, built-up
land, and non-mangrove vegetation, which
are defined as follows (Table 2-4).

A limitation of this study is that it has
not yet used tidal data as input for RF
classification. Tidal data will be considered
for use as input for RF classification in
future studies.
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Table 2-3: Index for R

Index

Algorithm on Sentinel 2A

References

(NIR — Green)
MV l=——— MVI

(Sentinelgg — Sentinelgy)

(Baloloy et al., 2020)

" (SWIRL — Green)

(Sentinelgg — Sentinelg,)

- (Sentinelg,, — Sentinelgy)

(Kuenzer et al., 2011)

(Sentinelgy — Sentinelg,,)

(Sentinelgy + Sentinelg,)

(Prayudha et al., 2024)

"~ (Sentinelg,, + Sentinelgy)

vy < (VIR — Red)
" (NIR + Red) NDVI =
_ (NIR — SWIR\gp_1z0p)
EMI = (NIR + Green) EMI
MNDWI — (Green — SWIR)
- (Green + SWIR) MNDWT =
NDMI = (NIR — SWIR)
= (NIR T SWIR) NDMI =
npsalr — Red = NIR) =
(Red + NIR) NDSall =

(Sentinelg, — Sentinelg,,)

(Sentinely; + Sentinelg,,)

(Sentinelgy, — Sentinelg,,)

(Sentinelgy + Sentinelg,,)

(Sentinelg, — Sentinelgg)
(Sentinelg, + Sentinelgg)

(Xu, 2006)

(Purwanto et al., 2022)

(Purwanto et al., 2022)

Table 2-4. Land Cover Class Description

Land Cover Class

Description

Water
Mangrove
Open land

Build up

Non Mangrove
Vegetation

Rivers, ponds, sea
Natural mangroves, rehabilitated mangroves
Open ground, sand
Residential, industrial, office areas

Rice fields, plantations, scrubland, forests, grasslands

Source: Castillo et al. (2021) modified

4) Accuracy Assessment: To evaluate
the performance of the classification model,
accuracy assessment was carried out
using a confusion matrix approach. This
method enables the calculation of four key
metrics (Congalton, 1991): Producer’s
Accuracy (PA), User’s Accuracy (UA),
Overall Accuracy (OA), and the Kappa
Coefficient (KA). Validation data were
obtained from high-resolution imagery
available via Google Earth Pro. PA reflects
the proportion of reference samples
correctly classified for each class and is
commonly used to assess omission errors.

UA indicates the likelihood that a pixel
classified into a certain category actually
represents that category on the ground,
addressing commission  errors. OA
provides the ratio of correctly classified
pixels to the total number of reference
pixels used. The KA offers a statistical
measure that accounts for agreement
occurring by chance and considers both
omission and commission errors.

Xa'!'
PA = ( ) » 100% (1)
i+
X
va = (52) » 100% @)
E;—_IX!'!'
04 =—— + 1009
N ° @)
ga= Yz K Lo Ko 00, (4)
N2 — E:-:-J(XH * +1)
where:
N :  Total number of pixels in the area
X : Diagonal value of the contingency
matrix at row i and column i
Xy :  Total number of pixels in column i
X.. ¢ Total number of pixels in row i

In addition to the confusion matrix
evaluation, the mangrove cover
classification was further validated using
the 2024 National Mangrove Map issued
by Ministry of Forestry (2025). A complete
overview of the research workflow is
illustrated in Figure 2-2.
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Sentinel-2 Imagery
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Producing additional

y

Cloud masking

Reference Data

bands:
MVI, NDVI, EMI, DEM-SRTM
MNDWI, NDMI,

NDSall Elevation, Slope

}

1 Year Mosaic Imagery

Additional bands:
MVI, NDVI, EMI,
MNDWI, NDMI, NDSall,

Elevation, Slope

Native bands:
Blue (B2), Green (B3), Red
(B4), Red Edge (B5-B7),
NIR (B8), SWIR (B11-B12)

Random forest

assessment

!

o]

testing

High Resolution Data
Satellite Imagery sampling
National Mangrove
Map “é;
- >~
I 7
x training
100% Accuracy

classification

Coastal Land Cover and
Mangrove Canopy Cover

Figure 2-2: Research flow

3 RESULT AND DISCUSSION
3.1 Sentinel-2A RGB Visualization
Spectral analysis combining the Red
(B4), NIR (B8), and SWIR (B11/B12) bands
from Sentinel-2A imagery reveals distinct
reflectance signatures across different
coastal land cover types (Figure 3-1).
Mangrove forests are characterized by low
reflectance values in both the Red and
SWIR bands, primarily due to their high
leaf water content and tidal absorption
effects. In contrast, the NIR band shows
higher reflectance, reflecting a dense and
healthy internal leaf structure (L. Wang et
al., 2018; C. Zhang et al., 2012). Semi-
natural terrestrial vegetation outside
mangrove areas also shows high NIR
reflectance, but generally higher SWIR
values, which is caused by reduced leaf
water content and drier soil conditions
(Baloloy et al., 2020; L. Wang et al., 2018).
Open land areas, characterized by dry
soils or sparse vegetation, typically show
moderate reflectance in the Red band and
redused values in the NIR, while the SWIR
band exhibits intermediate reflectance
levels indicating low moisture content
(Tran et al., 2022; L. Wang et al., 2018). In
contrast, built-up zones display high Red
band reflectance due to the prevalence of
artificial materials such as concrete and
roofing, with relatively lower reflectance in
the NIR and SWIR bands (Tran et al.,
2022). Water bodies can be identified by
very low reflectance in the NIR and SWIR

bands, and slightly higher reflectance in
the Red and Green bands, especially in
still water conditions, which facilitates
their distinction from vegetated areas (Jia
et al., 2019).

115°12,000°E

115°15,000'E

525 b il

. )
Sy 2 ;'(‘:_N
T

Legend:

I Mangrove

8°47,400'S

et

115°12,000'E 115°15,000'E

Figure 3-1: Mangrove view in RGB NIR SWIR Red
from Sentinel-2A

By exploiting the spectral differences
captured by these three bands, the RF
algorithm effectively discriminates among
coastal land cover types. The contrasting
spectral differences between mangrove
forests—characterized by low Red, high
NIR, and low SWIR reflectance—and
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terrestrial vegetation with high NIR and
SWIR values, support better classification
accuracy compared to relying solely on
indices such as NDVI (Tran et al., 2022).
This methodology has proven invaluable
for accurately mapping coastal land cover
in complex and dynamic tropical
environments.

3.2 Coastal Land Cover Classification

The classification of coastal land cover in
the Benoa Bay area using Sentinel-2A data
combined  with a RF algorithm
demonstrated strong  capability in
distinguishing between complex land cover
types such as mangroves, built-up land,
water, and open lands (Figure 3-2). The RF
model utilizes spectral information across
the visible, near-infrared, and red-edge
bands, enabling it to effectively separate
classes with similar spectral signatures.
Its non-parametric nature and robustness
to multicollinearity among predictor
variables make it well-suited to handling
high-dimensional data commonly found in
dynamic coastal zones. The overall
classification accuracy exceeded 90%, with
a Kappa statistic above 90%, highlighting
the model's robustness in capturing
spatial heterogeneity. These results
corroborate previous research supporting
RF as a reliable tool for coastal land cover
mapping, particularly in tropical regions
with diverse land use patterns (Belgiu &
Dragut, 2016; Panggabean et al., 2023;
Rodriguez-Galiano et al., 2012).

In general, based on the results of land
cover classification in the coastal area of
Benoa Bay with different treatments (DS,

wDS), there is a diverse spatial
distribution between  water classes,
mangroves, non-mangrove vegetation,

open land, and built-up land in locations
that are not much different. Spatially, the

classification map reveals distinct patterns:

water (light blue) dominate the bay’s
central and canal areas, while mangroves
(dark green) are predominantly found

along shorelines and river deltas,
particularly in the western and
southeastern sectors, indicating dense
forest cover. Non-mangrove vegetation
(light green) tends to occupy upland zones
adjacent to mangroves, extending beyond
tidal limits. Open land (white) often
appears near transitional areas between
vegetation and urban development,
possibly reflecting reclamation sites or
vacant lands. Built-up areas (red) are
concentrated primarily in the northern and
northwestern parts, pointing to significant
anthropogenic pressures on the coastal
ecosystem.

Although the distribution of land cover
class locations is in the exact location,
there are differences in the area of land
cover (Figure 3-2). The RF DS
classification results show a wider range of
mangrove and open land classes than the
RF wDS results. The mangrove results of
the RF DS cover 1,290 ha, while the RF
wDS covers 1,270 ha. The open land of
the RF DW is 2,022 ha, while the RF wDS
covers 741 ha. In contrast to the land
cover area for the water class, built-up
land, and non-mangrove vegetation, the
results of the RF DS classification are less
than those of the RF wDS. The land cover
of the water class from the RF DS covers
an area of 6,158 ha, while the results of
the RF wDS are 6,167 ha; the land cover of
the built-up land class from the RF DS
covers an area of 2,721 ha, while the
results of the RF wDS are 2,889 ha. The
land cover of the non-mangrove vegetation
class from the RF DS covers an area of
2,243 ha, while the results of the RF wDS
are 2,391 ha (Figure 3-3).

Based on the coastal land cover
classification results in the Benoa Bay
area, as presented in the confusion matrix,
the accuracy metrics indicate that the
classification model performs with high
and consistent accuracy across different
classes (Table 3-1 and Table 3-2).
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Figure 3-2: Coastal land cover from the RF classification with DS (a) and wDS (b) treatment
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Table 3-1: Confusion Matrix Accuracy Test of RF DS Classification

Reference Data

. User
Land Cover Water Mangrove Open Build Up Non Total Accuracy
Land Mangrove (%)
Vegetation
Water 2,045 0 0 0 2,045 100
Mangrove 0 912 0 0 912 100
£ Open Land 1 174 1 177 98
© Build Up 0 6 898 0 904 99
Jon Mangrove 0 0 5 1 310 316 98
egetation
Total 2,046 912 185 900 311 4,354
Producer Accuracy 100 100 94 100 100
(%)
Overall Accuracy (OA) (%) 100
Kappa (K) (%) 99
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Table 3-2: Confusion Matrix Accuracy Test of RF wDS Classification

Reference Data

q User
Ll Chivsar Water Mangrove Open Build Up Non Total Accuracy
Land Mangrove (%)
Vegetation
Water 2,088 0 0 0 2,088 100
Mangrove 0 842 0 0 842 100
§ Open Land 0 0 173 1 2 176 98
© Build Up 0 0 6 924 0 930 99
Non Mangrove 0 0 11 0 311 322 97
Vegetation
Total 2,088 842 190 925 313 4,358
Poroducer Accuracy 100 100 9] 100 99
(%)
Overall Accuracy (OA) (%) 100
Kappa (K) (%) 99

The water class shows user accuracies
of 100% (2045/2045) and 100%
(2088/2088) in DS and wDS
classification, respectively, indicating that
almost all pixels classified as water
bodies are indeed water bodies according
to the reference data. This high accuracy
reflects the distinct spectral signature of
water, particularly in the blue NIR bands,
which are commonly used in remote
sensing for water detection.

The mangrove class shows user
accuracies of 100% (912/912) and 100%
(842/842) in the DS and wDS
classifications, respectively, indicating
that the model is very effective at
distinguishing mangroves from non-

mangrove vegetation, even though
ecologically both have overlapping
reflectance spectral. This high

performance suggests that the integration
of vegetation indices and spectral features,
such as NDVI, MVI, and SWIR bands,
within the RF algorithm significantly

enhances the precision in identifying
coastal vegetation types.
The open land class had user

accuracies of 98% (174/177) and 98%
(173/176) in DS and wDS classification,
respectively. Although slightly lower than
the water and mangrove classes, this
result remains high and indicates that
areas with minimal or no vegetation cover
are relatively easy for the model to
identify. The strong reflectance
differences in the SWIR and Red bands
contribute to the model's ability to

distinguish this class from vegetated
areas.

In the build-up class, user accuracy in
the DS and wDS classifications was 99%
(898/904) and 99% (924/930),
respectively, indicating high accuracy in
classifying built-up areas. High
reflectance in the SWIR band and distinct
textural roughness serve as key
indicators that allow the RF algorithm to
effectively classify this land cover type.

The non-mangrove vegetation class
showed user accuracy in the DS and wDS
classification of 98% (310/316) and 97%
(311/322), slightly lower than mangrove,
but still relatively accurate. This suggests
that despite spectral similarities with
mangrove, the inclusion of additional
spectral and textural features
successfully minimized classification
errors and improved overall model
performance.

Overall, the accuracy is 100%, with
4339 out of 4354 pixels correctly
classified in RF DS and 4338 out of 4358
in RF wDS. The high overall and per-class
accuracy confirms that the RF algorithm,
which uses a combination of multiband
Sentinel 2A data and relevant spectral
indices, effectively identified land cover
variations in ecologically complex coastal
areas such as Benoa Bay.

This spatial distribution pattern
highlights the need for further analysis
on habitat fragmentation and ecological
connectivity of mangrove ecosystems,
particularly in response to the ongoing
expansion of built-up areas. The satellite
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image-based  classification  approach
provides accurate and  up-to-date
information, which is essential for
supporting data-driven coastal
conservation planning and sustainable
management efforts.

3.3 Mangrove Canopy Cover

Different spectral reflectance patterns
enable effective differentiation among
vegetation, soil, and water in satellite-
based land cover classification. The red
spectral region (600-700nm) is highly
responsive to chlorophyll absorption,
resulting in low reflectance values for
healthy vegetation. Conversely, vegetation
tends to reflect strongly in the NIR
spectrum (700-1100nm) due to its
internal leaf structure, which scatters
NIR wavelengths efficiently (H. Zhang et
al., 2023). In the SWIR region (beyond
1100 nm), reflectance is  primarily
influenced by water content and the
structural composition of plant material,
such as cellulose. Vegetation with high
moisture levels, including mangroves,
typically exhibits strong SWIR absorption.
As such, the spectral signature
characterized by high NIR reflectance and
reduced SWIR reflectance serves as a key
indicator of healthy, water-rich foliage
commonly associated with mangrove
ecosystems (C. Zhang et al., 2012).

In mangrove vegetation located in the
intertidal zones, NIR reflectance is very
high, while SWIR and Red reflectance are
quite low, resulting in a distinctive
spectral profile—usually appearing dark
brown or dark green in the image. This
pattern results from tidal inundation,
which increases moisture in both leaf
tissues and substrate, enhancing SWIR
absorption and  generating strong
contrast with high NIR reflectance
(Prayudha et al., 2024; H. Zhang et al.,
2023). The simultaneous use of these
bands in spectral index-based
classifications, such as NDVI or MVI, is
highly effective in distinguishing
mangrove cover from other coastal
vegetation, especially in complex ecotonal
environments.

Overlay results between mangrove
canopy cover from the RF DS and WDS
classifications and the national mangrove
map show a high degree of spatial
agreement. The mangrove canopy cover
shown in dark green is mainly within the
boundaries of the national mangrove map,
marked by the yellow line. However,
several areas of mangrove canopy are
identified as being outside the official
boundaries of the national map,
indicating possible spatial changes or
previously unmapped natural expansion
of mangroves (Figure 3-4). In addition,
errors occur in water pools or puddles
that are detected as mangroves, possibly
because these objects resemble the
reflections of mangroves that grow in
flooded areas.

Based on the resulting confusion
matrix, the RF DS classification showed
high accuracy with a user accuracy of
82% for the mangrove class (105,264 of
128,659 pixels), and RF wDS of 83%
(105,197 of 126,601 pixels), indicating
that most of the pixels classified as
mangroves were indeed in accordance
with the national reference map. The
non-mangrove class also showed high
accuracy of 100% (1,243,938 of
1,249,754 pixels) in the RF DS
classification and 100% (1,245,929 of
1,252,812 pixels) in the RF wDS
classification, reflecting the model's
ability to distinguish areas not covered by
mangroves.

Overall, the total number of correctly
classified pixels in RF DS was 1,349,202
out of 1,378, 413, resulting in an overall
accuracy of 98%; in RF wDS, 1,351,126
out of 1,378,413 pixels, with an overall
accuracy of 98%. This level of accuracy
indicates that the Sentinel-2 data-based
classification approach with the RF
algorithm  can  accurately identify
mangrove canopies, even at a higher level
of detail than the national reference. The
emerging spatial differences may indicate
the actual dynamics of mangrove cover,
requiring regular updates to the reference
map based on the latest observational
data.
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Figure 3-4 : Overlay results of the 2024 National Mangrove Map with mangrove canopy cover results
from RF DS (a) and RF wDS (b)

Table 3-3: Accuracy Test of RF DS Classification Confusion Matrix with
National Mangrove Map

Reference Data

User Accuracy

Land Cover Total o
Non-mangrove  Mangrove (%)
Non- 1,243,938 5,816 1,249,754 100
¥ mangrove
S Mangrove 23,395 105,264 128,659 82
Total 1,267,333 111,080 1,378,413
Producer
Accuracy (%) %8 %

Overall Accuracy (OA) (%)

Kappa (K) (%)

98
87

Table 3-3: Accuracy Test of RF wDS Classification Confusion Matrix with
National Mangrove Map

Reference Data

User Accuracy

Land Cover Total o
Non-mangrove  Mangrove (%)
g Nom- 1,245,929 5,883 1,251,812 100
& mangrove
© Mangrove 21,404 10,5197 126,601 83
Total 1,267,333 111,080 1,378,413
Producer
Accuracy (%) %8 %

Overall Accuracy (OA) (%)

Kappa (K) (%)

98
87
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3.4 Discussion

In this study, mangrove canopy cover
classification was performed using the RF
algorithm, combined with several spectral
indices (NDVI, MVI, MNDWI, EMI, and
NDSall) in Sentinel-2A data,
demonstrating  strong capability in
minimizing spectral confusion between
mangroves and other coastal vegetation
types. NDVI is widely recognized for its
responsiveness to vegetation greenness
and exhibits a high correlation with
mangrove canopy area (r ® 0.91), as noted
by (Xue & Qian, 2022). However, it
remains  insufficient to  distinguish
mangroves from other dense green cover
reliably. More targeted indices, such as
MVI and EMI, have demonstrated superior
performance in capturing distinct spectral
and structural features of various
mangrove communities (Baloloy et al.,
2020; Prayudha et al., 2024). In particular,
EMI can accurately separate mangrove
species, including nipa palms and forest
floor components, achieving an overall
classification accuracy of 87% and a
Kappa value of 0.84. These results surpass
those obtained using the standard RF
classification method (OA = 0.73, Kappa =
0.66) and also outperform other indices
such as AMMI, according to (Prayudha et
al., 2024).

The MVI was specifically designed to
enhance mapping accuracy in mangrove
ecosystems by contrasting NIR-Green and
SWIR-Green reflectance values, which
improves the separation of mangroves
from both coastal vegetation and bare
surfaces (Baloloy et al., 2020).
Furthermore, a suite of moisture-sensitive
indices—namely =¥ MNDWI, EMI, and
NDSall—adds depth to the analysis by
detecting wetness and salinity gradients
that are not captured by NDVI alone. For
example, MNDWI and NDMI reveal surface
water presence and soil moisture content,
crucial for distinguishing mangrove zones
(Simarmata et al.,, 2024). Meanwhile,
NDSall plays an important role in
determining saline microhabitats, thus
supporting accurate mapping of mangrove
stands in coastal areas (Parenti, 2014).

Recent research highlights that
integrating time-series features from
vegetation and water-related indices,

particularly NDVI and MNDWI, can
significantly enhance the performance of
land cover classification using the RF

algorithm. Reported gains in accuracy
reach up to 94%, representing a notable
improvement from baseline levels of
around 82% (Arfa & Minaei, 2024). One of
RF’s key strengths lies in its ability to
manage multicollinearity and handle high-
dimensional datasets comprising diverse
spectral and structural features, all while
maintaining consistent classification
quality (Raza et al., 2024; Wasniewski et
al., 2020).

Coastal vegetation has similar spectral
signatures—especially in NDVI values or
texture characteristics—making
misclassification a common problem;
however, RF's ability to integrate multi-
source inputs helps mitigate these errors
by leveraging complementary data
dimensions. This advantage is particularly
evident in complex ecosystems such as
mangroves, where spectral overlap is
common. Furthermore, RF algorithms
have demonstrated robustness across
multiple image segmentation scales and in
noisy or imbalanced training datasets,
provided the training samples are of
sufficient size and diversity (Cherian & K,
2024; Maurya et al., 2021).

The addition of texture-based features,
particularly those derived from the Grey-
Level Co-Occurrence Matrix (GLCM),
further enhanced classification accuracy.
High-resolution imagery, such as that
from WorldView-3, has proven effective in
differentiating among mangrove species
when combined with spectral and textural
inputs (T. Wang et al., 2015).

In mangrove ecosystems,
microtopography—especially surface
elevation and slope—plays a critical role in
determining tidal inundation regimes that
shape spatial patterns of vegetation
zonation. Elevation functions as a reliable
proxy for flood frequency and duration,
thereby indirectly influencing soil salinity,
texture, and redox conditions that govern
mangrove community distributions
(Baloloy et al., 2020; Leong et al., 2018).
Moreover, slope geometry—whether
concave or convex—alffects tidal flow and
sediment deposition dynamics, ultimately
modulating habitat resilience to sea-level
rise and the formation of distinct intertidal
zones (Xie et al., 2022). Although elevation
and slope play an essential role in
mangrove growth, this study did not find a
significant effect due to differences in the
spatial resolution of the image data used.
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Elevation and slope data from the 30 m
resolution SRTM DEM did not significantly
influence the results compared to higher-
resolution image data because, in reality,
there are various topographic height
variations within 30 m pixels. Therefore,
for accurate results, elevation and
topographic data with more detailed
spatial resolution are required.

Recent evidence indicates that
integrating vegetation, moisture/salinity
indices, and terrain variables (elevation
and slope) within RF models markedly
improves mangrove mapping accuracy,
particularly for canopy extent and coastal

land cover delineation. For instance,
studies by (Ligono & Okolie, 2022)
demonstrated enhanced detection of

mangrove changes in Gambia when MVI
and RF were combined. Similarly,
(Simarmata et al., 2024) observed that
incorporating indices such as EMI and
NDSall allowed RF to capture moisture
content and salinity gradients unique to
mangrove environments more effectively.

Furthermore, integrating structural
features (e.g. GLCM-derived texture) and
SAR data—such as Sentinel-1
backscatter—can significantly boost
classification precision by providing
information on canopy structure and
subsurface moisture not fully represented
in optical imagery alone (Cherian & K,
2024; Simarmata et al.,, 2024). This
research addresses the gap in
understanding RF's robustness to spectral
overlap by proposing a comprehensive
approach combining spectral, textural,
and moisture-related inputs—offering an
adaptive framework for reliable mangrove
canopy detection.

Despite its advantages, RF classification
still classifies some water bodies, ponds, or
puddles as mangroves. This error is
caused by the complex interactions among
the training data structure, limited image
resolution, spectral characteristics of
coastal areas, tidal conditions, and the
lack of ecological information during
modeling, as RF performs separation
based on spectral features or indices (Xia

et al., 2018). Classification of coastal
objects using RF requires selecting
appropriate inputs, as the coastal

environment is influenced by dynamic
tides that affect water spectral values.
Water bodies, ponds, and puddles in
coastal areas contain a mixture of water,

sediment, and algae or similar organisms,
thus having reflectance values identical to
those of mangroves. Therefore, RF
misidentifies these objects due to the lack
of clear boundaries between these features
(A. Zhang et al., 2019). Differences in tidal
phases affect spectral values, so
classification on a single recording date
can provide less or more information;
therefore, it is recommended to use
multitemporal data (Xia et al., 2018).

4 CONCLUSSIONS

This research concludes that the RF
algorithm demonstrates strong capability
in classifying coastal land cover,
particularly in accurately identifying
mangrove canopy cover at a spatial scale.
The developed model, which integrates
Sentinel-2A data along with a combination
of spectral bands and vegetation indices,
yielded high classification performance.
Accuracy assessment indicated high
values of overall accuracy and Kappa
coefficient for coastal land cover
classification, as well as for mangrove
canopy mapping when validated against
the 2024 national mangrove map. These
results confirm that the proposed
approach is reliable and suitable for
supporting sustainable monitoring and
management of coastal areas.
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