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Abstract. Mangrove forests play an essential role in maintaining the stability of coastal 
ecosystems by providing habitat for various species, protecting shorelines, and as a carbon 
source. The presence of mangrove areas can be monitored using land-cover information 
derived from remote sensing data using the Random Forest (RF) classification method, 
enabling practical ecosystem assessment and management. This study aims to develop 
and evaluate an RF classification model to produce accurate spatial information about 
mangrove canopy cover. The study area, Benoa Bay in Bali, Indonesia, is known for its 
dynamic and ecologically complex mangrove habitat. Inputs for the RF classification are 
bands on Sentinel-2A satellite imagery, Mangrove Vegetation Index (MVI), Normalized 
Difference Vegetation Index (NDVI), Enhanced Mangrove Index (EMI), Modified Normalized 
Difference Water Index (MNDWI), Normalized Difference Moisture Index (NDMI), and 
Normalized Difference Salinity Index (NDSalI), along with topographic variables such as 
elevation and slope with two treatments namely RF with DEM + Slope (DS) and RF without 
DEM + Slope (wDS). Model validation was conducted using high-resolution imagery from 
Google Earth Pro and the 2024 National Mangrove Map. Coastal land cover classification 
was divided into water, mangrove, open land, built-up land, and non-mangrove vegetation. 
In general, the results of RF classification with different treatments (DS, wDS) had very 
high accuracy, as evidenced by Overall Accuracy exceeding 90% and a Kappa value 
exceeding 90%, indicating the model's consistency and reliability in capturing spatial 
variations in land cover. Similarly, the accuracy of mangrove canopy cover classification 
based on the national mangrove map was more than 90% and the kappa value was more 
than 80%. These findings demonstrate the robustness of the RF model and its potential to 
support data-driven coastal management practices. 
 
Keywords: Random Forest; mangrove; Benoa Bay. 
 

1 INTRODUCTION  

Random Forest (RF) is a widely used 
ensemble classifier that builds multiple 
decision trees to enhance prediction 
stability and reliability, particularly in 
spatial and remote sensing contexts. 
Unlike parametric methods, RF does not 
require assumptions about the underlying 
data distribution, which makes it highly 

adaptable for processing complex datasets 
such as satellite imagery with diverse 
spectral and spatial characteristics (Belgiu 
& Drăguţ, 2016; Biau & Scornet, 2016; 
Immitzer et al., 2012). This algorithm 
consistently achieves higher classification 
accuracy in land cover studies, especially 
when augmented with multi-temporal and 
textural variables, yielding accuracy 
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improvements ranging from 10% to 30% in 
specific land cover types (Breiman, 2001; 
Elmahdy et al., 2020; Nandika et al., 2023; 
Rodriguez-Galiano et al., 2012). 

RF is well-regarded for its ability to 
manage multicollinearity and effectively 
process large, high-dimensional datasets. 
In addition, it offers internal measures of 
predictor significance, which are 
frequently applied in feature selection 
processes within spatial modeling tasks 
(Belgiu & Drăguţ, 2016). Given these 
capabilities, RF holds strong promise for 
enhancing the accuracy of spatial mapping 
applications, including mangrove canopy 
cover classification. 

RF has become a widely adopted 
approach for mapping mangrove 
distribution using multispectral satellite 
imagery, largely due to its classification 
accuracy and computational efficiency. 
One of RF's advantages is its compatibility 
with cloud-based platforms such as Google 
Earth Engine (GEE), which facilitates rapid 
and scalable remote sensing analysis over 
large areas. For example, a research  in 
Hara, Iran, utilizing combined Sentinel-1 
and Sentinel-2 data, reported that RF 
achieved an overall accuracy of 93.23% 
and a Kappa coefficient of 0.92 when 
distinguishing mangrove, tidal flats, and 
open water (Giri, 2023). Similarly, research 
conducted in Pakistan used RF within the 
GEE environment to assess mangrove 
cover changes from 1990 to 2020, 
achieving over 90% accuracy with Landsat 
30 m imagery (Gilani et al., 2021). 
Moreover, RF has consistently 
outperformed alternative classifiers, such 
as kernel logistic regression and Naïve 
Bayes, in global-scale mangrove mapping 
efforts, with reported F1 scores exceeding 
0.90 in multiple studies using both 
medium- and high-resolution data 
(Elmahdy et al., 2020). 

Accurate mapping of mangrove canopy 
cover is essential for understanding the 
spatial distribution and structural 
complexity of coastal vegetation. Mangrove 
ecosystems serve crucial ecological, 
economic, and social functions, 
particularly due to their role as highly 
efficient carbon sinks. Studies have shown 
that mangroves can store carbon at levels 
three to five times greater than most 
terrestrial forest types (Donato et al., 2011; 
Kauffman et al., 2020; Murdiyarso et al., 
2015; Tomlinson, 2016). A significant 

portion of this carbon—up to 77.9%—is 
found within mangrove biomass 
components such as tree trunks, foliage, 
and sediment layers (Bachmid et al., 2018). 

Globally, the estimated average carbon 
stock in mangrove ecosystems is 
approximately 1,023 Mg C/ha (Donato et 
al., 2011), while Indonesia’s mangroves 
store an average of about 891.70 tons per 
hectare. The total potential carbon stock 
across Indonesian mangroves is estimated 
at 2.89 Tt C (Wahyudi et al., 2018). In the 
context of carbon financing, this surplus 
represents a valuable opportunity: 
Indonesian mangroves could contribute up 
to 3.14 PgC, equivalent to approximately 
Rp 220 trillion, assuming a carbon market 
price of US$5 per ton. (Murdiyarso et al., 
2015). From an economic perspective, the 
annual ecosystem service value of 
mangrove forests is estimated to exceed 
US$50,000 per hectare for local coastal 
communities (Mukherjee et al., 2014). 

The ability of mangroves to sequester 
and store carbon significantly contributes 
to the fulfillment of Sustainable 
Development Goal (SDG) 13, which 
focuses on Climate Action. Beyond their 
climate mitigation potential, mangroves 
offer a wide array of ecosystem services 
that align with multiple other SDGs. These 
include their contributions to poverty 
reduction (SDG 1), food security (SDG 2), 
access to clean water (SDG 6), promotion 
of sustainable livelihoods (SDG 8), 
resilience in coastal urban areas (SDG 11), 
marine ecosystem health (SDG 14), and 
the protection of terrestrial ecosystems 
(SDG 15) (Anggraeni, 2024; Friess et al., 
2019; Gong et al., 2024; Sasmito et al., 
2023). 

Benoa Bay, located in Bali, Indonesia, 
has a mangrove forest of approximately 
1,373.50 hectares (As-syakur et al., 2025; 
Yastika et al., 2019). This area lies in close 
proximity to dense human activities, 
including residential neighborhoods, 
industrial facilities, airport infrastructure, 
commercial zones, and reclaimed coastal 
lands, placing it under constant 
environmental pressure (Sugianthi et al., 
2007). As such, consistent monitoring is 
essential to support long-term mangrove 
ecosystem sustainability. 

The use of Sentinel-2A satellite imagery 
has proven effective for detecting mangrove 
cover due to its high temporal and spatial 
resolution. The satellite captures imagery 
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at resolutions of 10, 20, and 60 meters 
across various multispectral bands, along 
with a 10-meter panchromatic band and a 
revisit frequency of every five days. 
Sentinel-2A includes 13 spectral bands 
that cover the visible, NIR, and SWIR 
regions of the electromagnetic spectrum 
(ESA, 2025). This wide spectral range, 
when combined with suitable classification 
techniques, enables the extraction of 
detailed and reliable land cover 
information. 

This research aims to develop and 
evaluate a RF classification model to 
produce accurate spatial information on 
mangrove canopy cover, thereby 
supporting sustainable coastal 
management. The research gap in this 
study is the challenge of mangrove canopy 
classification, which is often hindered by 
spectral overlap with other coastal 
vegetation. Therefore, an adaptive and 
robust machine learning approach, such 
as RF, that combines multi-source data 
with relevant spectral and textural 
features is required. RF has weaknesses in 
classifying high-resolution data with 
complex spectral and spatial features, as it 
can be challenging to separate similar 
features in such datasets (Breiman, 2001). 
Furthermore, multi-temporal mangrove 
cover detection requires careful attention, 
as mangrove sites differ from terrestrial 
vegetation and are strongly influenced by 
tides. Determining balanced training 
samples for each land cover class is 
necessary to reduce class imbalance and 
spatial leakage caused by the inclusion of 
training areas during testing. Therefore, 
attention and precision are required when 
determining the location of the training 
area to produce accurate information. 

2 MATERIALS AND METHODOLOGY 

2.1 Location and Data 

This research was carried out in the 
mangrove ecosystem of Benoa Bay, located 
in southern Bali, Indonesia, within the 
geographic coordinates of 08°41'–08°47' S 
and 115°10'–115°15' E (Figure 2-1). The 
area extends across both Badung Regency 
and Denpasar City, covering several 
coastal villages, namely Sesetan, Pemogan, 
Serangan, and Sidakarya (As-syakur et al., 
2025; Danaparamita, 2020; Loviasari et al., 
2017). Geomorphologically, Benoa Bay is a 
semi-enclosed estuarine environment, 
shaped by the interaction of river 

systems—particularly the Badung and 
Mati rivers—and heavily influenced by 
surrounding human activities, including 
port operations and tourism development 
(As-syakur et al., 2025). The region falls 
within a tropical monsoon climate zone, 
receiving an average annual rainfall of 
approximately 1,803 mm. Air 
temperatures typically range between 
24.0 °C and 27.5 °C throughout the year, 
with an annual mean of about 27.6 °C. 
Relative humidity levels tend to fluctuate 
between 80% and 85%, while the peak of 
the rainy season occurs during December 
and January, during which monthly 
precipitation may reach 250–296 mm (As-
syakur et al., 2025; Bali (Denpasar) 
Climate (Indonesia): Data and Graphs for 
Weather & Climate In Bali (Denpasar), 
2025). 

The data used in this study are a mosaic 
of Sentinel 2A Surface Reflectance images 
for the period January - December 2024, 
provided by the European Space Agency 
(ESA), with atmospheric correction already 
applied. Sentinel-2 offers 13 spectral 
bands, captured at spatial resolutions of 
10, 20, and 60 meters, and revisits the 
same location every 5 to 7 days (Table 2-1) 
(ESA, 2025). This combination of high 
spectral and temporal resolution makes it 
particularly suitable for vegetation 
monitoring in dynamic coastal ecosystems. 
In addition to utilizing satellite-derived 
imagery, this research  used the 2024 
National Mangrove Map—issued by 
(Ministry of Forestry, 2025)—as an 
external reference to validate the accuracy 
of mangrove canopy cover derived from the 
RF classification. 

 

 
Figure 2-1: Benoa Bay Bali, Indonesia 

Table 2-1: Sentinel-2A Data Specifications  
(Esa, 2025) 

Resolusi Spektral (nm) Resolusi 

Spasial 

B2: Blue (~493 nm)  

B3: Green (~560 nm)  

10 
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B4: Red (~665 nm)  

B8: NIR (~833) 

B5: Vegetation Red Edge 

(~704nm) 

B6: Vegetation Red Edge 

(~740nm)  

B7: Vegetation Red Edge 

(~783nm) 

B8A: Vegetation Red Edge 

(~865nm)  

B11: SWIR (~1610nm)  

B12: SWIR dan (~2190nm) 

20 

B1: Coastal Aerosol (~443nm) 

B9: Water Vapour (~945 nm) 

B10: Cirrus band (~1374 nm) 

60 

This study also used a 30 m resolution 
SRTM (Shuttle Radar Topography Mission) 
Digital Elevation Model (DEM) from NASA, 
which provides elevation and slope 
information used as boundary data to 
determine mangrove growth locations. 
Alongi (2002) and Komiyama et al. (2008) 
state that mangroves grow on land at 
elevations of 0-5 m above sea level. In 
addition, data from the 2024 National 
Mangrove Map of the Ministry of Forestry 
were used as accuracy test data for the 
mangrove information derived from the 
classification process. 

2.2 Methods 

The methodological workflow in this 
research  consists of four main stages: 
data acquisition and preprocessing, 
sample area definition, RF classification, 
and accuracy evaluation. All data-related 
processes were conducted using the cloud-
based GEE platform. 

1)  Data Acquisition and Preprocessing: 
Sentinel-2A imagery was filtered to 
minimize cloud contamination by applying 
cloud masking based on the Quality 
Assessment (QA) band available in GEE, 
ensuring optimal imagery for analysis. 
Cloud separation is performed to obtain 
image data under minimal cloud 
conditions using Cloud Probability in 
Sentinel-2 (Sen2Cor) on the GEE platform. 
The Sen2Cor method uses QA60 band to 
identify cloud-affected pixels based on the 
value in the 10th bit. Pixels with a value of 
1 in the 10th bit are identified as clouds 
and cloud shadows, while a value of 0 is 
identified as cloud-free pixels. 

2)  Sample Selection: The number of 
samples was determined using the Slovin 
method, which is calculated based on the 

number of pixels in the image data. The 
stratified spatial split method was also 
used to prevent spatial leakage, dividing 
the data into 70% for modeling and 30% 
for accuracy testing, as reported by 
Nandika et al. (2023). The research 
location had 1,351,322 pixels, and with an 
α value of 0.5, the minimum number of 
samples required was 400 pixels. In this 
study, the number of training samples was 
10,406, and the number for accuracy 
testing was 4,354. The training area for RF 
classification was 105, evenly distributed 
across the research location (Table 2-2). 

 
Table 2-2. Number of Training Area Polygons 

Training Area Number of 
Poligons 

Water 30 

Mangrove 32 

Open land 13 

Build up 11 

Non Mangrove Vegetation  19 

 

3)  RF Classification: Input features for 
the RF classifier included selected spectral 
bands from Sentinel-2A (Blue, Green, Red, 
Red Edge bands 5, 6, 7, NIR, and SWIR 
bands 11 and 12), as well as several 
mangrove-related spectral indices: MVI, 
NDVI, EMI, MNDWI, NDMI, and NDSalI 
(Table 2-3). The features used in this RF 
include vegetation spectral reflectance, 
canopy structure, water content, relevant 
thermal-mineral conditions in the 
mangrove ecosystem in the intertidal zone, 
canopy humidity, salinity, water bodies, 
and settlements, so that it can separate 
mangroves from other land covers.  

RF classification uses 200 trees with 
Variable presplit: 6, Meanleaf population: 
5, Bag fraction: 0.7, Max nodes: 500. The 
RF classification process is carried out 
using two treatments, namely using DEM 
+ Slope (DS), and without using DEM + 
Slope (wDS). The results of the RF 
classification will be classified into water 
bodies, mangroves, open land, built-up 
land, and non-mangrove vegetation, which 
are defined as follows (Table 2-4). 

A limitation of this study is that it has 
not yet used tidal data as input for RF 
classification. Tidal data will be considered 
for use as input for RF classification in 
future studies. 
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Table 2-3: Index for R 

Index Algorithm on Sentinel 2A References 

  

(Baloloy et al., 2020) 

  

(Kuenzer et al., 2011) 

  

(Prayudha et al., 2024) 

  

(Xu, 2006) 

  

(Purwanto et al., 2022) 

  

(Purwanto et al., 2022) 

 
Table 2-4. Land Cover Class Description 

Land Cover Class Description 

Water Rivers, ponds, sea 

Mangrove Natural mangroves, rehabilitated mangroves 

Open land Open ground, sand 

Build up Residential, industrial, office areas 

Non Mangrove 

Vegetation 

Rice fields, plantations, scrubland, forests, grasslands 

Source: Castillo et al. (2021) modified 

4)  Accuracy Assessment: To evaluate 
the performance of the classification model, 
accuracy assessment was carried out 
using a confusion matrix approach. This 
method enables the calculation of four key 
metrics (Congalton, 1991): Producer’s 
Accuracy (PA), User’s Accuracy (UA), 
Overall Accuracy (OA), and the Kappa 
Coefficient (KA). Validation data were 
obtained from high-resolution imagery 
available via Google Earth Pro. PA reflects 
the proportion of reference samples 
correctly classified for each class and is 
commonly used to assess omission errors. 

UA indicates the likelihood that a pixel 
classified into a certain category actually 
represents that category on the ground, 
addressing commission errors. OA 
provides the ratio of correctly classified 
pixels to the total number of reference 
pixels used. The KA offers a statistical 
measure that accounts for agreement 
occurring by chance and considers both 
omission and commission errors. 

 

 
                  (1) 

 

 
                  (2) 

 

 

                       

(3) 

 

 
(4) 

 

where: 

 : Total number of pixels in the area 

 : Diagonal value of the contingency 

matrix at row i and column i 

 : Total number of pixels in column i 

 : Total number of pixels in row i 

 

In addition to the confusion matrix 
evaluation, the mangrove cover 
classification was further validated using 
the 2024 National Mangrove Map issued 
by Ministry of Forestry (2025). A complete 
overview of the research workflow is 
illustrated in Figure 2-2.  
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Figure 2-2: Research flow 

3 RESULT AND DISCUSSION 
3.1 Sentinel-2A RGB Visualization 

Spectral analysis combining the Red 
(B4), NIR (B8), and SWIR (B11/B12) bands 
from Sentinel-2A imagery reveals distinct 
reflectance signatures across different 
coastal land cover types (Figure 3-1). 
Mangrove forests are characterized by low 
reflectance values in both the Red and 
SWIR bands, primarily due to their high 
leaf water content and tidal absorption 
effects. In contrast, the NIR band shows 
higher reflectance, reflecting a dense and 
healthy internal leaf structure (L. Wang et 
al., 2018; C. Zhang et al., 2012). Semi-
natural terrestrial vegetation outside 
mangrove areas also shows high NIR 
reflectance, but generally higher SWIR 
values, which is caused by reduced leaf 
water content and drier soil conditions 
(Baloloy et al., 2020; L. Wang et al., 2018). 

Open land areas, characterized by dry 
soils or sparse vegetation, typically show 
moderate reflectance in the Red band and 
redused values in the NIR, while the SWIR 
band exhibits intermediate reflectance 
levels indicating low moisture content 
(Tran et al., 2022; L. Wang et al., 2018). In 
contrast, built-up zones display high Red 
band reflectance due to the prevalence of 
artificial materials such as concrete and 
roofing, with relatively lower reflectance in 
the NIR and SWIR bands (Tran et al., 
2022). Water bodies can be identified by 
very low reflectance in the NIR and SWIR 

bands, and slightly higher reflectance in 
the Red and Green bands, especially in 
still water conditions, which facilitates 
their distinction from vegetated areas (Jia 
et al., 2019). 

 

 
Figure 3-1: Mangrove view in RGB NIR SWIR Red 

from Sentinel-2A 

 
By exploiting the spectral differences 

captured by these three bands, the RF 
algorithm effectively discriminates among 
coastal land cover types. The contrasting 
spectral differences between mangrove 
forests—characterized by low Red, high 
NIR, and low SWIR reflectance—and 
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terrestrial vegetation with high NIR and 
SWIR values, support better classification 
accuracy compared to relying solely on 
indices such as NDVI (Tran et al., 2022). 
This methodology has proven invaluable 
for accurately mapping coastal land cover 
in complex and dynamic tropical 
environments. 

 

3.2 Coastal Land Cover Classification 
The classification of coastal land cover in 

the Benoa Bay area using Sentinel-2A data 
combined with a RF algorithm 
demonstrated strong capability in 
distinguishing between complex land cover 
types such as mangroves, built-up land, 
water, and open lands (Figure 3-2). The RF 
model utilizes spectral information across 
the visible, near-infrared, and red-edge 
bands, enabling it to effectively separate 
classes with similar spectral signatures. 
Its non-parametric nature and robustness 
to multicollinearity among predictor 
variables make it well-suited to handling 
high-dimensional data commonly found in 
dynamic coastal zones. The overall 
classification accuracy exceeded 90%, with 
a Kappa statistic above 90%, highlighting 
the model's robustness in capturing 
spatial heterogeneity. These results 
corroborate previous research supporting 
RF as a reliable tool for coastal land cover 
mapping, particularly in tropical regions 
with diverse land use patterns (Belgiu & 
Drăguţ, 2016; Panggabean et al., 2023; 
Rodriguez-Galiano et al., 2012).  

In general, based on the results of land 
cover classification in the coastal area of 
Benoa Bay with different treatments (DS, 
wDS), there is a diverse spatial 
distribution between water classes, 
mangroves, non-mangrove vegetation, 
open land, and built-up land in locations 
that are not much different. Spatially, the 
classification map reveals distinct patterns: 
water (light blue) dominate the bay’s 
central and canal areas, while mangroves 
(dark green) are predominantly found 

along shorelines and river deltas, 
particularly in the western and 
southeastern sectors, indicating dense 
forest cover. Non-mangrove vegetation 
(light green) tends to occupy upland zones 
adjacent to mangroves, extending beyond 
tidal limits. Open land (white) often 
appears near transitional areas between 
vegetation and urban development, 
possibly reflecting reclamation sites or 
vacant lands. Built-up areas (red) are 
concentrated primarily in the northern and 
northwestern parts, pointing to significant 
anthropogenic pressures on the coastal 
ecosystem.  

Although the distribution of land cover 
class locations is in the exact location, 
there are differences in the area of land 
cover (Figure 3-2). The RF DS 
classification results show a wider range of 
mangrove and open land classes than the 
RF wDS results. The mangrove results of 
the RF DS cover  1,290 ha, while the RF 
wDS covers  1,270 ha. The open land of 
the RF DW is 2,022 ha, while the RF wDS 
covers 741 ha. In contrast to the land 
cover area for the water class, built-up 
land, and non-mangrove vegetation, the 
results of the RF DS classification are less 
than those of the RF wDS. The land cover 
of the water class from the RF DS covers 
an area of 6,158 ha, while the results of 
the RF wDS are 6,167 ha; the land cover of 
the built-up land class from the RF DS 
covers an area of 2,721 ha, while the 
results of the RF wDS are 2,889 ha. The 
land cover of the non-mangrove vegetation 
class from the RF DS covers an area of 
2,243 ha, while the results of the RF wDS 
are 2,391 ha (Figure 3-3).  

Based on the coastal land cover 
classification results in the Benoa Bay 
area, as presented in the confusion matrix, 
the accuracy metrics indicate that the 
classification model performs with high 
and consistent accuracy across different 
classes (Table 3-1 and Table 3-2).  
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(a) (b) 

Figure 3-2: Coastal land cover from the RF classification with DS (a) and wDS (b) treatment 
 

 
Figure 3-3: Land Cover Area with DS (a) and wDS (b) Treatment 

 
Table 3-1: Confusion Matrix Accuracy Test of RF DS Classification 

Land Cover 

Reference Data 

Total 

User 

Accuracy 

(%) 

Water  Mangrove Open 

Land 

Build Up  Non 

Mangrove 

Vegetation 

C
la

ss
 

Water  2,045 0 0 0 0 2,045 100 

Mangrove 0 912 0 0 0 912 100 

Open Land 1 0 174 1 1 177 98 

Build Up  0 0 6 898 0 904 99 

Non Mangrove 

Vegetation 
0 0 5 1 310 316 98 

Total 2,046 912 185 900 311 4,354  

Producer Accuracy 

(%) 
100 100 94 100 100   

Overall Accuracy (OA) (%) 100 

Kappa (K) (%) 99 
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Table 3-2:  Confusion Matrix Accuracy Test of RF wDS Classification 

Land Cover 

Reference Data 

Total 

User 

Accuracy 

(%) 

Water  Mangrove Open 

Land 

Build Up  Non 

Mangrove 

Vegetation 

C
la

ss
 

Water  2,088 0 0 0 0 2,088 100 

Mangrove 0 842 0 0 0 842 100 

Open Land 0 0 173 1 2 176 98 

Build Up  0 0 6 924 0 930 99 

Non Mangrove 

Vegetation 
0 0 11 0 311 322 97 

Total 2,088 842 190 925 313 4,358  

Producer Accuracy 

(%) 
100 100 91 100 99   

Overall Accuracy (OA) (%) 100 

Kappa (K) (%) 99 

 

The water class shows user accuracies 
of 100% (2045/2045) and 100% 
(2088/2088) in DS and wDS 
classification, respectively, indicating that 
almost all pixels classified as water 
bodies are indeed water bodies according 
to the reference data. This high accuracy 
reflects the distinct spectral signature of 
water, particularly in the blue NIR bands, 
which are commonly used in remote 
sensing for water detection. 

The mangrove class shows user 
accuracies of 100% (912/912) and 100% 
(842/842) in the DS and wDS 
classifications, respectively, indicating 
that the model is very effective at 
distinguishing mangroves from non-
mangrove vegetation, even though 
ecologically both have overlapping 
reflectance spectral. This high 
performance suggests that the integration 
of vegetation indices and spectral features, 
such as NDVI, MVI, and SWIR bands, 
within the RF algorithm significantly 
enhances the precision in identifying 
coastal vegetation types. 

The open land class had user 
accuracies of 98% (174/177) and 98% 
(173/176) in DS and wDS classification, 
respectively. Although slightly lower than 
the water and mangrove classes, this 
result remains high and indicates that 
areas with minimal or no vegetation cover 
are relatively easy for the model to 
identify. The strong reflectance 
differences in the SWIR and Red bands 
contribute to the model's ability to 

distinguish this class from vegetated 
areas. 

In the build-up class, user accuracy in 
the DS and wDS classifications was 99% 
(898/904) and 99% (924/930), 
respectively, indicating high accuracy in 
classifying built-up areas. High 
reflectance in the SWIR band and distinct 
textural roughness serve as key 
indicators that allow the RF algorithm to 
effectively classify this land cover type. 

The non-mangrove vegetation class 
showed user accuracy in the DS and wDS 
classification of 98% (310/316) and 97% 
(311/322), slightly lower than mangrove, 
but still relatively accurate. This suggests 
that despite spectral similarities with 
mangrove, the inclusion of additional 
spectral and textural features 
successfully minimized classification 
errors and improved overall model 
performance. 

Overall, the accuracy is 100%, with 
4339 out of 4354 pixels correctly 
classified in RF DS and 4338 out of 4358 
in RF wDS. The high overall and per-class 
accuracy confirms that the RF algorithm, 
which uses a combination of multiband 
Sentinel 2A data and relevant spectral 
indices, effectively identified land cover 
variations in ecologically complex coastal 
areas such as Benoa Bay. 

This spatial distribution pattern 
highlights the need for further analysis 
on habitat fragmentation and ecological 
connectivity of mangrove ecosystems, 
particularly in response to the ongoing 
expansion of built-up areas. The satellite 
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image-based classification approach 
provides accurate and up-to-date 
information, which is essential for 
supporting data-driven coastal 
conservation planning and sustainable 
management efforts. 

 

3.3 Mangrove Canopy Cover 
Different spectral reflectance patterns 

enable effective differentiation among 
vegetation, soil, and water in satellite-
based land cover classification. The red 
spectral region (600–700 nm) is highly 
responsive to chlorophyll absorption, 
resulting in low reflectance values for 
healthy vegetation. Conversely, vegetation 
tends to reflect strongly in the NIR 
spectrum (700–1100 nm) due to its 
internal leaf structure, which scatters 
NIR wavelengths efficiently (H. Zhang et 
al., 2023). In the SWIR region (beyond 
1100 nm), reflectance is primarily 
influenced by water content and the 
structural composition of plant material, 
such as cellulose. Vegetation with high 
moisture levels, including mangroves, 
typically exhibits strong SWIR absorption. 
As such, the spectral signature 
characterized by high NIR reflectance and 
reduced SWIR reflectance serves as a key 
indicator of healthy, water-rich foliage 
commonly associated with mangrove 
ecosystems (C. Zhang et al., 2012). 

In mangrove vegetation located in the 
intertidal zones, NIR reflectance is very 
high, while SWIR and Red reflectance are 
quite low, resulting in a distinctive 
spectral profile—usually appearing dark 
brown or dark green in the image. This 
pattern results from tidal inundation, 
which increases moisture in both leaf 
tissues and substrate, enhancing SWIR 
absorption and generating strong 
contrast with high NIR reflectance 
(Prayudha et al., 2024; H. Zhang et al., 
2023). The simultaneous use of these 
bands in spectral index-based 
classifications, such as NDVI or MVI, is 
highly effective in distinguishing 
mangrove cover from other coastal 
vegetation, especially in complex ecotonal 
environments. 

Overlay results between mangrove 
canopy cover from the RF DS and WDS 
classifications and the national mangrove 
map show a high degree of spatial 
agreement. The mangrove canopy cover 
shown in dark green is mainly within the 
boundaries of the national mangrove map, 
marked by the yellow line. However, 
several areas of mangrove canopy are 
identified as being outside the official 
boundaries of the national map, 
indicating possible spatial changes or 
previously unmapped natural expansion 
of mangroves (Figure 3-4). In addition, 
errors occur in water pools or puddles 
that are detected as mangroves, possibly 
because these objects resemble the 
reflections of mangroves that grow in 
flooded areas. 

Based on the resulting confusion 
matrix, the RF DS classification showed 
high accuracy with a user accuracy of 
82% for the mangrove class (105,264 of 
128,659 pixels), and RF wDS of 83% 
(105,197 of 126,601 pixels), indicating 
that most of the pixels classified as 
mangroves were indeed in accordance 
with the national reference map. The 
non-mangrove class also showed high 
accuracy of 100% (1,243,938 of 
1,249,754 pixels) in the RF DS 
classification and 100% (1,245,929 of 
1,252,812 pixels) in the RF wDS 
classification, reflecting the model's 
ability to distinguish areas not covered by 
mangroves.  

Overall, the total number of correctly 
classified pixels in RF DS was 1,349,202 
out of 1,378, 413, resulting in an overall 
accuracy of 98%; in RF wDS, 1,351,126 
out of 1,378,413 pixels, with an overall 
accuracy of 98%. This level of accuracy 
indicates that the Sentinel-2 data-based 
classification approach with the RF 
algorithm can accurately identify 
mangrove canopies, even at a higher level 
of detail than the national reference. The 
emerging spatial differences may indicate 
the actual dynamics of mangrove cover, 
requiring regular updates to the reference 
map based on the latest observational 
data.
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(a) (b) 

Figure 3-4 : Overlay results of the 2024 National Mangrove Map with mangrove canopy cover results 
from RF DS (a) and RF wDS (b) 

 

 

Table 3-3: Accuracy Test of RF DS Classification Confusion Matrix with  

National Mangrove Map 

Land Cover 

Reference Data 

Total 
User Accuracy 

(%) Non-mangrove Mangrove 

C
la

ss
 

Non-

mangrove 
1,243,938 5,816 1,249,754 100 

Mangrove 23,395 105,264 128,659 82 

Total 1,267,333 111,080 1,378,413  

Producer 

Accuracy (%) 
98 95   

Overall Accuracy (OA) (%) 98 

Kappa (K) (%) 87 

 

 
Table 3-3: Accuracy Test of RF wDS Classification Confusion Matrix with  

National Mangrove Map 

Land Cover 

Reference Data 

Total 
User Accuracy 

(%) Non-mangrove Mangrove 

C
la

ss
 Non-

mangrove 
1,245,929 5,883 1,251,812 100 

Mangrove 21,404 10,5197 126,601 83 

Total 1,267,333 111,080 1,378,413  

Producer 

Accuracy (%) 
98 95   

Overall Accuracy (OA) (%) 98 

Kappa (K) (%) 87 
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3.4 Discussion 

In this study, mangrove canopy cover 
classification was performed using the RF 
algorithm, combined with several spectral 
indices (NDVI, MVI, MNDWI, EMI, and 
NDSalI) in Sentinel-2A data, 
demonstrating strong capability in 
minimizing spectral confusion between 
mangroves and other coastal vegetation 
types. NDVI is widely recognized for its 
responsiveness to vegetation greenness 
and exhibits a high correlation with 
mangrove canopy area (r ≈ 0.91), as noted 
by (Xue & Qian, 2022). However, it 
remains insufficient to distinguish 
mangroves from other dense green cover 
reliably. More targeted indices, such as 
MVI and EMI, have demonstrated superior 
performance in capturing distinct spectral 
and structural features of various 
mangrove communities (Baloloy et al., 
2020; Prayudha et al., 2024). In particular, 
EMI can accurately separate mangrove 
species, including nipa palms and forest 
floor components, achieving an overall 
classification accuracy of 87% and a 
Kappa value of 0.84. These results surpass 
those obtained using the standard RF 
classification method (OA = 0.73, Kappa = 
0.66) and also outperform other indices 
such as AMMI, according to (Prayudha et 
al., 2024). 

The MVI was specifically designed to 
enhance mapping accuracy in mangrove 
ecosystems by contrasting NIR–Green and 
SWIR–Green reflectance values, which 
improves the separation of mangroves 
from both coastal vegetation and bare 
surfaces (Baloloy et al., 2020). 
Furthermore, a suite of moisture-sensitive 
indices—namely MNDWI, EMI, and 
NDSalI—adds depth to the analysis by 
detecting wetness and salinity gradients 
that are not captured by NDVI alone. For 
example, MNDWI and NDMI reveal surface 
water presence and soil moisture content, 
crucial for distinguishing mangrove zones 
(Simarmata et al., 2024). Meanwhile, 
NDSalI plays an important role in 
determining saline microhabitats, thus 
supporting accurate mapping of mangrove 
stands in coastal areas (Parenti, 2014). 

Recent research highlights that 
integrating time-series features from 
vegetation and water-related indices, 
particularly NDVI and MNDWI, can 
significantly enhance the performance of 
land cover classification using the RF 

algorithm. Reported gains in accuracy 
reach up to 94%, representing a notable 
improvement from baseline levels of 
around 82% (Arfa & Minaei, 2024). One of 
RF’s key strengths lies in its ability to 
manage multicollinearity and handle high-
dimensional datasets comprising diverse 
spectral and structural features, all while 
maintaining consistent classification 
quality (Raza et al., 2024; Waśniewski et 
al., 2020). 

Coastal vegetation has similar spectral 
signatures—especially in NDVI values or 
texture characteristics—making 
misclassification a common problem; 
however, RF's ability to integrate multi-
source inputs helps mitigate these errors 
by leveraging complementary data 
dimensions. This advantage is particularly 
evident in complex ecosystems such as 
mangroves, where spectral overlap is 
common. Furthermore, RF algorithms 
have demonstrated robustness across 
multiple image segmentation scales and in 
noisy or imbalanced training datasets, 
provided the training samples are of 
sufficient size and diversity (Cherian & K, 
2024; Maurya et al., 2021). 

The addition of texture-based features, 
particularly those derived from the Grey-
Level Co-Occurrence Matrix (GLCM), 
further enhanced classification accuracy. 
High-resolution imagery, such as that 
from WorldView-3, has proven effective in 
differentiating among mangrove species 
when combined with spectral and textural 
inputs (T. Wang et al., 2015). 

In mangrove ecosystems, 
microtopography—especially surface 
elevation and slope—plays a critical role in 
determining tidal inundation regimes that 
shape spatial patterns of vegetation 
zonation. Elevation functions as a reliable 
proxy for flood frequency and duration, 
thereby indirectly influencing soil salinity, 
texture, and redox conditions that govern 
mangrove community distributions 
(Baloloy et al., 2020; Leong et al., 2018). 
Moreover, slope geometry—whether 
concave or convex—affects tidal flow and 
sediment deposition dynamics, ultimately 
modulating habitat resilience to sea-level 
rise and the formation of distinct intertidal 
zones (Xie et al., 2022). Although elevation 
and slope play an essential role in 
mangrove growth, this study did not find a 
significant effect due to differences in the 
spatial resolution of the image data used. 
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Elevation and slope data from the 30 m 
resolution SRTM DEM did not significantly 
influence the results compared to higher-
resolution image data because, in reality, 
there are various topographic height 
variations within 30 m pixels. Therefore, 
for accurate results, elevation and 
topographic data with more detailed 
spatial resolution are required. 

Recent evidence indicates that 
integrating vegetation, moisture/salinity 
indices, and terrain variables (elevation 
and slope) within RF models markedly 
improves mangrove mapping accuracy, 
particularly for canopy extent and coastal 
land cover delineation. For instance, 
studies by (Ligono & Okolie, 2022) 
demonstrated enhanced detection of 
mangrove changes in Gambia when MVI 
and RF were combined. Similarly, 
(Simarmata et al., 2024) observed that 
incorporating indices such as EMI and 
NDSalI allowed RF to capture moisture 
content and salinity gradients unique to 
mangrove environments more effectively. 

Furthermore, integrating structural 
features (e.g. GLCM-derived texture) and 
SAR data—such as Sentinel-1 
backscatter—can significantly boost 
classification precision by providing 
information on canopy structure and 
subsurface moisture not fully represented 
in optical imagery alone (Cherian & K, 
2024; Simarmata et al., 2024). This 
research  addresses the gap in 
understanding RF's robustness to spectral 
overlap by proposing a comprehensive 
approach combining spectral, textural, 
and moisture-related inputs—offering an 
adaptive framework for reliable mangrove 
canopy detection. 

Despite its advantages, RF classification 
still classifies some water bodies, ponds, or 
puddles as mangroves. This error is 
caused by the complex interactions among 
the training data structure, limited image 
resolution, spectral characteristics of 
coastal areas, tidal conditions, and the 
lack of ecological information during 
modeling, as RF performs separation 
based on spectral features or indices (Xia 
et al., 2018). Classification of coastal 
objects using RF requires selecting 
appropriate inputs, as the coastal 
environment is influenced by dynamic 
tides that affect water spectral values. 
Water bodies, ponds, and puddles in 
coastal areas contain a mixture of water, 

sediment, and algae or similar organisms, 
thus having reflectance values identical to 
those of mangroves. Therefore, RF 
misidentifies these objects due to the lack 
of clear boundaries between these features 
(A. Zhang et al., 2019). Differences in tidal 
phases affect spectral values, so 
classification on a single recording date 
can provide less or more information; 
therefore, it is recommended to use 
multitemporal data (Xia et al., 2018). 

 
4 CONCLUSSIONS 

This research concludes that the RF 
algorithm demonstrates strong capability 
in classifying coastal land cover, 
particularly in accurately identifying 
mangrove canopy cover at a spatial scale. 
The developed model, which integrates 
Sentinel-2A data along with a combination 
of spectral bands and vegetation indices, 
yielded high classification performance. 
Accuracy assessment indicated high 
values of overall accuracy and Kappa 
coefficient for coastal land cover 
classification, as well as for mangrove 
canopy mapping when validated against 
the 2024 national mangrove map. These 
results confirm that the proposed 
approach is reliable and suitable for 
supporting sustainable monitoring and 
management of coastal areas. 
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