ANALISIS RESPON GERAK FLOATING CRANE BARGE UNTUK DECOMMISSIONING STRUKTUR LEPAS PANTAI
Main Article Content
Abstract
Penerapan floating crane barge memiliki potensi besar untuk operasi pengangkatan struktur dalam mendukung decommissioning anjungan lepas pantai pasca operasi. Respon gerak floating crane barge dalam perairan bergelombang selama operasi pengangkatan struktur di laut menjadi faktor penting dalam menunjang operasional yang aman. Pada penelitian ini, respon gerak dinamis floating crane barge terhadap gelombang dilakukan dengan simulasi eksperimen di laboratorium maneuvering ocean basin. Model uji barge yang dilengkapi dengan struktur crane boom sederhana dibuat dengan perbandingan skala 1:28. Respon gerak model uji dievaluasi dengan kondisi gelombang reguler dan gelombang irreguler. Karakteristik gerak amplitudo dijasikan dalam grafik RAO yang mana hasilnya menunjukkan kesesuaian antara gelombang reguler dan irreguler. Respon gerak terhadap gelombang acak mengalami peningkatan secara signifikan terjadi dari kondisi gelombang Hs = 0.50 m, Tp = 4.00 s ke kondisi gelombang Hs = 1.00 m, Tp = 5.50 s untuk heave sebesar 2.8 kali, untuk roll sebesar 2.5 kali dan untuk pitch sebesar 1.5 kali.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Budiartha, K. (2018). ABANDONMENT AND SITE RESTORATION.
Cha, J. H., Roh, M. il, & Lee, K. Y. (2010). Dynamic response simulation of a heavy cargo suspended by a floating crane based on multibody system dynamics. Ocean Engineering, 37(14–15), 1273–1291.
Chen, X., Zhu, R. chuan, Zhao, J., Zhou, W. jun, & Fan, J. (2018). Study on weakly nonlinear motions of ship advancing in waves and influences of steady ship wave. Ocean Engineering, 150(April 2017), 243–257.
Chu, Y., Li, G., Hatledal, L. I., Holmeset, F. T., & Zhang, H. (2021). Coupling of dynamic reaction forces of a heavy load crane and ship motion responses in waves. Ships and Offshore Structures, 0(0), 1–10.
Clauss, G. F., & Riekert, T. (1990). Operational limitations of offshore crane vessels. Proceedings of the Annual Offshore Technology Conference, 1990-May, 161–170.
Djatmiko, E. B. (2012). Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak .
DNV. (2014). Recommended practice DNV-RP-H201 “Lifting appliances used in subsea operations.” .
Gaeta, M. G., Segurini, G., Moreno, A. M., & Archetti, R. (2020). Implementation and validation of a potential model for a moored floating cylinder under waves. Journal of Marine Science and Engineering, 8(2).
Hatecke, H., Krüger, S., Christiansen, J., & Vorhölter, H. (2014). A fast sea-keeping simulation method for heavy-lift operations based on multi-body system dynamics. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1A.
Hong, K. S., & Ngo, Q. H. (2012). Dynamics of the container crane on a mobile harbor. Ocean Engineering, 53, 16–24.
Presiden republik indonesia, Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 1974 Tentang Pengawasan Pelaksanaan Eksplorasi Dan Eksploitasi Minyak Dan Gas Di Daerah Lepas Pantai 1 (1974).
ITTC. (2017). Laboratory Modelling of Waves: regular, irregular and extreme events. ITTC - Recommended Procedure and Guidelines, 1–12.
Jeong, D. H., Roh, M. il, & Ham, S. H. (2016). Lifting simulation of an offshore supply vessel considering various operating conditions. Advances in Mechanical Engineering, 8(6), 1–13.
Jiao, J., Chen, C., & Ren, H. (2019). A comprehensive study on ship motion and load responses in short-crested irregular waves. International Journal of Naval Architecture and Ocean Engineering, 11(1), 364–379.
Journée, J. M. J., & Massie, W. W. (2001). Offshore Hydromechanics (First Edit). Delft University of Technology.
Mokhtar, H. K. M. (2014). Decommissioning of Offshore Platforms. In Oil and Gas Decommissioning (Vol. 1, Issue 1).
Nam, B. W., Kim, N. W., Choi, Y. M., Hong, S. Y., & Kim, J. W. (2015). An experimental study on deepwater crane installation of subsea equipment in waves. Proceedings of the International Offshore and Polar Engineering Conference, 2015-Janua, 1279–1283.
Nam, B. W., Kim, N. W., & Hong, S. Y. (2017). Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water. International Journal of Naval Architecture and Ocean Engineering, 9(5), 552–567.
Olagnon, M., Ewans, K., Forristall, G., & Prevosto, M. (2013). West africa swell spectral shapes. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE: Vol. 2 B.
Sun, L., Eatock Taylor, R., & Choo, Y. S. (2012). Multi-body dynamic analysis of float-over installations. Ocean Engineering, 51(May), 1–15.
Tian, X., Wang, P., Li, X., Wu, X., Lu, W., Wu, C., Hu, Z., Rong, H., Sun, H., Wang, A., Lin, D., Fu, S., Zu, Y., Cho, C., Zhou, T., Zhang, D., & Chen, Y. (2018). Design and application of a monitoring system for the floatover installation. Ocean Engineering, 150(July 2017), 194–208.
Yang, X. R., Gan, Q. M., Wang, Y. H., & Wang, G. D. (2019). Dynamic response analysis of the lifting load system of a crane ship in irregular waves. Journal of Marine Science and Technology (Taiwan), 27(6), 481–497.
Zawawi, N. A. W. A., Liew, M. S., & Na, K. L. (2012). Decommissioning of offshore platform: A sustainable framework. CHUSER 2012 - 2012 IEEE Colloquium on Humanities, Science and Engineering Research, 26–31.
Zhao, Y., Cheng, Z., Gao, Z., Sandvik, P. C., & Moan, T. (2019). Numerical study on the feasibility of offshore single blade installation by floating crane vessels. Marine Structures, 64(7491), 442–462.