CONSTRUCTION STRENGTH ANALYSIS OF A 250-TONNE CAPACITY DECK CRANE BARGE WITH LONGITUDINAL VARIATION

Main Article Content

Kharis Abdullah
Sumardiono
M. Lukman Arif
Agung Prasetya Utomo
Denny Oktavina Radianto

Abstract

A deck crane barge is a barge with a crane system attached to the deck for loading, unloading, and lifting various materials or supporting equipment. In marine building construction, strength assessment must be carried out to ensure that the built design will not fail. The finite element method is one method to perform strength assessment of ship construction faster and simplify calculating. This study assessed the strength of crane barge decks with three variations of longitudinal size with reduced longitudinal size on the web and face plate with the element method. From the calculation results, Model A or the existing construction, has the smallest Von Mises Stress, while Model C, with reduced web and face plate size to L 80 x 80 x 8 mm, has the largest Von Mises Stress. The reduction in the size of the faceplate and web plate in the longitudinal section reduced the strength of the ship construction with higher stress values. However, all three tested Models had Von Mises Stresses below the maximum permissible stress required by BKI.

Downloads

Download data is not yet available.

Article Details

Section
Articles
Author Biography

Kharis Abdullah, Department of Shipbuilding Engineering, Politeknik Perkapalan Negeri Surabaya

Shipbuilding Engineering Department

References

Abdullah, K., Sumardiono, S., Soeroso, H., 2023. Strength Analysis of the Deck Crane Barge Using the Finite Element Method, in: Proceedings of the 1st International Conference on Sustainable Engineering Development and Technological Innovation, ICSEDTI 2022. EAI. https://doi.org/10.4108/eai.11-10-2022.2326425

Abubakar, A., Dow, R.S., 2013. Simulation of ship grounding damage using the finite element method. Int. J. Solids Struct. 50, 623–636. https://doi.org/10.1016/j.ijsolstr.2012.10.016

ANSYS, 2013. ANSYS Mechanical APDL Element Reference.

Asadnia, M., Kim Roddis, W.M., 2018. Modeling out-of-flatness and residual stresses in steel plate girders. Proc. Struct. Stab. Res. Counc. Annu. Stab. Conf. 2018.

Banerjee, B., 2014. Comparison of ANSYS elements SHELL181 and SOLSH190. https://doi.org/10.13140/RG.2.1.1406.3445

Berlioz, Trompette, 2010. Solid Mechanics Using The Finite Element Method. ohn Wiley & Sons Inc.

Biro Klasifikasi Indonesia, 2022. Rules For Classification And Construction Part 1 Seagoing Ships Volume II Rules For Hull. BKI, Jakarta.

DNVGL, 2015. Class guideline —DNVGL-CG-0127 Finite element analysis. DNVGL, Oslo.

Ertas, A.H., Alkan, V., Yilmaz, A.F., 2014. Finite element simulation of a mercantile vessel shipboard under working conditions. Procedia Eng. 69, 1001–1007. https://doi.org/10.1016/j.proeng.2014.03.082

Firdaus, N., Budi Djatmiko, E., Walujo Prastianto, R., Muhammad Fajariansyah Ismail, D., 2021. Motion Response Analysis of a Floating Crane Barge for the Decommissioning of Offshore Structures. Wave J. Ilm. Teknol. Marit. 15, 31–44.

Jurčíková, A.J., Rosmanit, M., 2013. Recommendations for Numerical Modeling and Analytical Assessment of a Planar Steel Chs Joint. VERSITA Vol. XIII. https://doi.org/10.2478/tvsb-2013-0009

Khairunnisa, Priyambodo Nur Ardi Nugroho, Abdullah, K., 2023. Stress Analysis of 91.5 Metre Coal Carrier Pontoon with Variations of Frame Distance. WAVE J. Ilm. Teknol. Marit. 17, 07–15. https://doi.org/10.55981/wave.2023.223

Konecranes, 2019. Konecranes Gottwald Cranes on Barge.

Lajarin, S.F., Magalhães, J.S.F., Marcondes, P.V.P., 2011. Numerical and experimental true strain assessment on sheet forming using mapped versus free meshing 49, 323–330.

Lee, S.E., Thayamballi, A.K., Paik, J.K., 2015. Ultimate strength of steel brackets in ship structures. Ocean Eng. 101, 182–200. https://doi.org/10.1016/j.oceaneng.2015.04.030

Logan, D.L., 2007. A first course in the finite element method, 4th ed. Thomson, Toronto.

Melosh, R.J., 1990. Finite element analysis convergence curves. Finite Elem. Anal. Des. 7, 115–121.

Mohamed A. El-Reedy, 2012. Offshore Structures Design, Construction and Maintenance. Gulf Professional Publishing.

Pujikuncoro, F.T., Zakki, A.F., Yudo, H., Perkapalan, D.T., Teknik, F., Diponegoro, U., 2016. Studi Analisa Kontruksi Deck Kapal Accommodation Work Barge Pada Fr 0-12 Akibat Penambahan Crane. J. Tek. Perkapalan 4, 0–7.

Rugarli, P., 2010. Structural Analysis with Finite Elements. Thomas Telford Limited.

Salimah, N., Satoto, S.W., Yuniarsih, N., 2016. Analisa Kekuatan Stuktur Deck Crane 15 Ton Pada Accomodation Barge Menggunakan Software Solidwork. J. Tek. Mesin.

Soares, C.G., 2011. Ships and Offshore Structures Analysis and Design of Marine Structures. Taylor & Francis, London. https://doi.org/10.1080/17445302.2011.546686

Trihantoro, A., Mulyatno, I.P., Amiruddin, W., 2022. Analisa Kekuatan Struktur Deck Crane Kapal Tanker 6500 DWT Menggunakan Metode Elemen Hingga. J. Tek. Perkapalan 10, 52.

Vukelić, G., Vizentin, G., 2017. Common Case Studies of Marine Structural Failures. Fail. Anal. Prev. https://doi.org/10.5772/intechopen.72789

Wai, C.M., Rivai, A., Bapokutty, O., 2013. Modelling optimization involving different types of elements in finite element analysis. IOP Conf. Ser. Mater. Sci. Eng. 50. https://doi.org/10.1088/1757-899X/50/1/012036