A Modular Tide LevePrediction Using Combination Ofharmonic-Analysis and Nonlinear Autoregressive Exogenous (Narx) Methodology in Semarang Indonesia

Main Article Content

Elvien Hastatomo Khasby
Anistia Malinda Hidayat
Usman Efendi
Pulung Nurtantio Andono
Catur Supriyanto
Arief Soeleman
Ferry Oktarisa
Aurel Dwiyana

Abstract

Semarang is highly prone to tidal floods year-round, making tidal prediction using methods like Harmonic Analysis with Least Squares (HA-LS) crucial for disaster mitigation. However, this method is not effective enough because it has relatively high Root Mean Squared Error (RMSE) value of up to 11.43 cm with coefficient of determination (R2) of around 0.727. The Nonlinear Autoregressive Exogenous (NARX) neural network model is then proposed to improve the accuracy of tide predictions. In general, the features used as input are divided into two types, namely atmospheric/weather data (temperature, pressure, direction, and wind speed) and estimated tide data from the HA-LS method. This research aims to analyze whether this type of neural network is suitable to be applied in Indonesia since the ocean and atmosphere condition might vary. Tidal observation data from the Tanjung Mas Maritime Meteorological Station is used as target data/actual data. Three scenarios are used by varying input types to find out which type of input produces the best performance of model prediction. Moreover, before feeding input data into the NARX neural network, all atmospheric data used as input are standardized using Z-score normalization, often called Min-Max scaling which can avoid the effect of outlier in the dataset. Based on these three scenarios, the use of combined atmospheric/weather data and tide estimates from HA-LS calculations as input to the NARX model produces the best predictive performance with the smallest RMSE value among all scenarios, approximately 5 cm, and the highest coefficient of determination (R2) at about 0.974. These results indicate that NARX model can predict tides with high accuracy in Semarang.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Abidin, H.Z., Andreas, H., Gumilar, I., Sidiq, T.P. & Fukuda, Y., 2013, ‘Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes’, Geomatics, Natural Hazards and Risk, 4(3), 226–240.

Alfahmi, F., Boer, R., Hidayat, R., Perdinan & Sopaheluwakan, A., 2019, ‘The Impact of Concave Coastline on Rainfall Offshore Distribution over Indonesian Maritime Continent’, Scientific World Journal, 2019.

Bagaskoro, A. & Saputro, N.D., 2023, ‘Pembuatan Aplikasi AWS Mobile di Stasiun Klimatologi Kelas 1 Jawa Tengah’, Prosiding Seminar Nasional …, 2023, 606–613.

Boussaada, Z., Curea, O., Remaci, A., Camblong, H. & Bellaaj, N.M., 2018, ‘A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation’, Energies, 11(3).

Buevich, A., Sergeev, A., Shichkin, A. & Baglaeva, E., 2021, ‘A two-step combined algorithm based on NARX neural network and the subsequent prediction of the residues improves prediction accuracy of the greenhouse gases concentrations’, Neural Computing and Applications, 33(5), 1547–1557.

Chicco, D., Warrens, M.J. & Jurman, G., 2021, ‘The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation’, PeerJ Computer Science, 7, 1–24.

Codiga, D.L., 2011, Unified Tidal Analysis and Prediction Using the UTide Matlab Functions, Narragansett.

Djamaluddin, T., Susanti, R.D., Aditiya, A., Pranowo, W.S., Mariyam, A.S., Hasanuddin, A.P., Mareta, L. & Rusnadi, I.E., 2023, Astronomical tidal constituents potentially trigger coastal floods on the north coast of Java, 040004.

Erlani, R. & Nugrahandika, W.H., 2019, ‘Ketangguhan Kota Semarang dalam Menghadapi Bencana Banjir Pasang Air Laut (Rob)’, Journal of Regional and Rural Development Planning, 3(1), 47.

Hakim, B.A., Suharyanto, S. & Hidajat, W.K., 2013, ‘PENGARUH KENAIKAN AIR LAUT PADA EFEKTIFITAS BANGUNAN UNTUK PERLINDUNGAN PANTAI KOTA SEMARANG’, Buletin Oseanografi Marina, 2(3), 81–93.

Henderi, H., 2021, ‘Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer’, IJIIS: International Journal of Informatics and Information Systems, 4(1), 13–20.

Ikhsyan, N., Muryani, C. & Rintayani, P., 2017, ‘Analisis Sebaran, Dampak dan Adaptasi Masyarakat terhadap Banjir Rob di Kecamatan Semarang Timur dan Kecamatan Gayamsari Kota Semarang’, Jurnal Geo Eco, 3(2), 145–156.

Koropitan, A.F. & Ikeda, M., 2008, ‘Three-dimensional modeling of tidal circulation and mixing over the Java Sea’, Journal of Oceanography, 64(1), 61–80.

Li, S., Liu, L., Cai, S. & Wang, G., 2019, ‘Tidal harmonic analysis and prediction with least-squares estimation and inaction method’, Estuarine, Coastal and Shelf Science, 220(March), 196–208.

Marfai, M.A. & King, L., 2008, ‘Tidal inundation mapping under enhanced land subsidence in Semarang, Central Java Indonesia’, Natural Hazards, 44(1), 93–109.

Permana, H., Hariadi, H. & Rochaddi, B., 2012, ‘KAJIAN KONDISI ARUS DAN SEBARAN SEDIMEN DASAR PADA SAAT MUSIM TIMUR DI PERAIRAN SEMARANG - DEMAK’, Journal of Oceanography, 1(1), 121–128.

Pugh, D., 1987, Tides, Surges and Mean Sea Level: A Handbook for Engineers and Scientists, John Wiley & Sons, Chichester.

Rahili, N., Hakim, B. Al, Ariyanto, D., Cholishoh, E., Aprijanto, Destianingrum, Prabawardani, R., Prijambodo, T. & Gumbira, G., 2023, ‘Tidal Characteristics for Disaster Preparedness in the Port Area (Case Study: Port of Semarang, Central Java)’, ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 28(2), 181–188.

Rayson, M.D., Jones, N.L., Ivey, G.N. & Gong, Y., 2021, ‘A Seasonal Harmonic Model for Internal Tide Amplitude Prediction’, Journal of Geophysical Research: Oceans, 126(10), 1–29.

Tatachar, A. V, 2021, ‘Comparative assessment of regression models based On model evaluation metrics’, International Research Journal of Engineering and Technology, 8(9), 853–860.

Wu, W., Li, L., Yin, J., Lyu, W. & Zhang, W., 2021, ‘A modular tide level prediction method based on a NARX neural network’, IEEE Access, 9, 147416–147429.

Xie, H., Tang, H.A.O. & Liao, Y., 2018, ‘Proceedings - International Conference on Machine Learning and Cybernetics’, Proceedings - International Conference on Machine Learning and Cybernetics, 2(July), 690.

Yin, J.C., Perakis, A.N. & Wang, N., 2018, ‘An Ensemble Real-Time Tidal Level Prediction Mechanism Using Multiresolution Wavelet Decomposition Method’, IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4856–4865.

Zhao, M., Zhang, R., Lin, C., Zhou, H. & Shi, J., 2020, ‘Stochastic Model Predictive Control for Dual-Motor Battery Electric Bus Based on Signed Markov Chain Monte Carlo Method’, IEEE Access, 8, 120785–120797.