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Abstract: Phenol is a priority pollutant that poses a significant risk to human health and ecological systems 
when released into aquatic environments. Consequently, numerous technologies have been developed and 

implemented to remove phenol from wastewater. These technologies can be classified into physical, chemical, 

and biological techniques. While conventional treatment methods can effectively remove phenol, some are 
more economical and less environmentally beneficial. This overview, which is based on a collation of relevant 

and comprehensive literatures, emphasizes various phenolic pollutants in wastewater and how 
mycoremediation can be implemented to address these issues. Mycoremediation research has been chiefly 

directed on investigating the effects of various conditions on phenol degradation and evaluating its 

effectiveness under controlled experiments. Moreover, mycoremediation enables a doable solution for 
mitigating pollution, improving water quality, and supporting biodiversity in aquatic ecosystems. These also 

mean that advancing mycoremediation encourages environmentally sustainable practice. However, the 
remaining gaps exist in current research including the toxicity assessment of degradation by-products, the 

application of synthetic biology methods for chassis modification, creation and development of innovative 
immobilization methods, improvement of remediation efficiency by integration of multiple technologies and 

scalability of mycoremediation for practical wastewater treatments. These areas warrant further research to 

advance the greater potential of mycoremediation. 
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1.  Introduction  
Water pollution has become a significant 

global concern due to several factors, including 
population growth, industrial expansion, 
urbanization, rising water usage, and 
agricultural practices. These issues have led to 
environmental degradation and contamination, 
adversely affecting water bodies, human 
health, and ecology. Phenolic compounds are a 
notable type of organic contaminants that 
significantly affect water quality due to their 
high toxicity and carcinogenic characteristics 
(Bibi et al., 2023; Liu et al., 2024). Phenol and 
its derivatives are among the most extensively 

utilized organic compounds. Simple phenolic 
molecules serve as intermediaries in the 
synthesis of specific polyphenolic secondary 
metabolites. They are also used as starting 
points for the industrial synthesis of numerous 
other chemical compounds. Consequently, 
industrial effluent from manufacturing organic 
chemicals, oil refining, and olive processing 
contains phenol and its derivatives (Wu et al., 
2022). 

Persistent pollutants, such as phenols, are 
resistant to degradation by physical, chemical, 
or biological means (Mohd, 2022). Because of 
this, phenol has been listed as one of 129 
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priority pollutants by the US EPA and the 
Canadian National Pollutant Release Inventory 
(NPRI) that must be remedied before being 
released into the environment (EPA, 2014). 
Approximately 10 million tons of phenolic 
compounds are released into the environment 
annually by agrochemicals, leather, textiles, 
petrochemicals, and pharmaceuticals industries 
(Alshabib & Onaizi, 2019). In Indonesia, for 
instance, phenolic compound was detected 
around 0.013 ng/L in the tributary of Bengawan 
Solo River (Khoiriyah et al., 2019). Moreover, 
industrial processes such as making paint, 
paper, pulp, and pesticides are believed to 
release phenolic chemicals into the 
environment (Alshabib & Onaizi, 2019). The 
percentage of phenolic compounds in industrial 
effluents can vary from 1 mg/L to 7000 mg/L 
(Mohd, 2022; Bibi et al., 2023). 

The discharge of untreated phenolic 
wastewater into the environment can cause 
significant health issues and pollute soil, 
surface water, and groundwater, disrupting the 
natural environment equilibrium (Anku et al., 
2017). Moreover, it is common for phenolic 
wastewater to seep into the ground and 
contaminate surrounding lakes, rivers, water 
reservoirs, and agricultural areas (Panigrahy et 
al., 2022). As a result, the EPA sets a criterion 
for water filtration at fewer than 1 part per 
billion (ppb) for phenol in surface waters. This 
decision complies with the standards 
established by the European Union. 

However, the permissible discharge limits 
for phenolic compounds are 0,5 mg/L for 
surface waters and 1,0 mg/L for effluents from 
sewage treatment systems as specified by Italy 
government, law no. 152/2006 (Mohd, 2022). 
The Indonesian government has established 
permissible phenol content limits for river water 
quality standards, ranging from 0,002 to 0,02 
mg/L depending on the intended usage (Law 
No. 22/2021). Phenolic compounds, even at 
low concentrations, can adversely affect 
aquatic biota, and in drinking water, they can 
cause unpleasant tastes and odors at level as 
low as 5 g/L (Panigrahy et al., 2022). Thus, 
proper and effective treatment of phenolic 
wastewater is crucial before reuse or discharge 
(Alshabib & Onaizi, 2019).   

Environmental exposure to phenol has a 
significant negative influence on human health 

as well as ecological systems. Even at modest 
levels, phenol can be lethal to aquatic life 
(Rittmann & McCarty, 2001). The human body 
can quickly absorb phenol through the skin, 
diet, and respiratory systems. Hanafee et al. 
(2019) stated that phenol exposure can result 
in a variety of health issues, including 
catastrophic skin damage, eye irritation, severe 
gastrointestinal problems, cardiovascular 
disorders, and, in the worst cases, death. 
Therefore, urgent intervention is required to 
mitigate the risks of phenol exposure and to 
remediate phenolic effluents in ecosystems. 

A variety of physical and chemical 
approaches, including distillation, membrane 
separation, chemical and electrochemical 
oxidation, ozonation, advanced oxidation, and 
photocatalysis, have been suggested in treating 
phenolic wastewater (Wu et al., 2022; Bibi et 
al., 2023). Effective removal phenolic 
contaminants rely on the selection of suitable 
membrane and adsorbent materials. However, 
these materials often exhibit significant losses 
and inadequate regeneration (Crini et al., 2019; 
Dotto & McKay, 2020). The high chemical 
requirements of complex oxidation processes 
result in considerable running costs, even 
though they are frequently highly efficient 
(Tuan Tran et al., 2022). Some treatment 
technologies merely transfer pollutants from 
the water to another medium, potentially 
causing secondary pollution (Hodges et al., 
2018).  Limitations of physical and chemical 
wastewater treatment methods have driven the 
development of advanced, cost-effective, and 
sustainable technologies to reduce their 
environmental impact (Mehdi et al., 2021; Wu 
et al., 2022). 

Mycoremediation is an environmental 
decontamination technique that utilizes fungi 
as a means of remediation. Fungi, alongside 
bacteria, are known for their diversity and 
remarkable capacity to decompose phenolic 
compounds. Unlike bacteria, fungi can thrive in 
ecologically challenging conditions, including 
environments with limited nutrient availability, 
reduced water activity, and low pH levels, 
where bacterial growth may be insufficient 
(Ibrahim & Al-Ghamdi, 2019). Fungi possess 
the capability to utilize phenol as a carbon 
source for their development, demonstrating 
remarkable adaptability to various ecosystems 
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and the ability to thrive in extreme conditions 
(Hanafee et al., 2019). This review describes 
the various types of phenolic pollutants present 
in aquatic ecosystems, their environmental 
impacts, and the utilization of fungal-based 
techniques for the remediation of phenol in 
these environments. 

 
2.  Methodology 

This review employs a literature review 
methodology to explore the presence of 
phenolic pollutants in aquatic ecosystems, their 
environmental impacts, and the application of 
fungal-based remediation techniques. Relevant 
studies were sourced from reputable scientific 
databases such as ScienceDirect, Web of 
Science, and SpingerLink. Search terms 
included combinations of keywords such as 
mycoremediation, biodegradation of phenol, 
phenol environmental impact, and fungi 
enzymatic pathways. The inclusion criteria 
focused on peer-reviewed journal articles 
published in English that addressed phenolic 
pollution in aquatic environments and 
discussed fungal-based remediation 
approaches. Studies unrelated to aquatic 
ecosystems, phenolic pollutants, or fungi-based 
techniques were excluded. Extracted data 
encompassed the types and sources of phenolic 
pollutants, their ecological effects, and the 
specific fungal mechanisms used for phenol 
degradation. The review synthesizes findings 
into three primary themes: the type of phenolic 
pollutants, the environmental and ecological 
impacts, and the potential of fungal-based 
bioremediation as a sustainable solution. This 
review focuses on highlighting the advantages 
of fungi in bioremediation while recognizing, 
but not extensively addressing, challenges and 
limitations such as scalability and economic 
viability. 

 
3. Result and Discussion 
3.1. Types of phenolic pollutants  

Phenolic compounds are introduced into 
aquatic environments through various 
pathways and can be detected in multiple 
environmental matrices, including surface 
water, seawater, and riverbed sediments. 
Common phenolic compound found in 
wastewater include simple phenols (phenol and 
cresols), chlorophenols (2,4-dichlorophenol 

and pentachlorophenol), nitrophenol (2-4 
dinitrophenol and 4-nitrophenol), and 
bisphenol  

 
3.1.1. Simple Phenols 

Simple phenols consist of a benzene ring 
bonded to a hydroxyl group (OH) and 
commonly present in significant concentrations 
in industrial wastewater, particularly from 
refineries. In some cases, phenol concentration 
in wastewater can reach levels as high as 10 
g/L (Wu et al., 2022). 
a. Phenol (C6H5OH): found in wastewater 

from the textile and pharmaceutical 
industries, phenol poses a threat to aquatic 
ecosystems, leading to reduced biodiversity 
(El-Naeb et al., 2022; Ahmaruzzaman et al., 
2024).  

b. Cresols (C7H8O): These methylated phenols, 
used in wood preservatives and disinfectants, 
exist in three isomeric forms (o-cresol, m-
cresol, p-cresol). They are harmful to both 
soil and water environments (Gucbilmez, 
2022).   

3. 1.2. Chlorinated Phenols 
Chlorinated phenols are phenol derivatives 

with one or more chlorine atoms covalently 
bonded. This compound are typically found in 
lake and river sediments, tannery waste and 
sewage sludge (Wu et al., 2022). 
a. 2,4-Dichlorophenol (C6H4Cl2O): Commonly 

used in pesticide production, this persistent 
pollutant adversely impacts both aquatic and 
terrestrial organisms (Gucbilmez, 2022). 

b. Pentachlorophenol (C6Cl5OH): Utilized in 
wood preservation and as a pesticide, 
pentachlorophenol is highly toxic to aquatic 
life and contributes to long-term soil and 
groundwater contamination (Kahru et al., 
2002).   

3.1.3. Nitrophenols 
Nitrophenols are used in agricultural and 

industrial processes and are linked to 
respiratory and hematological health issues in 
humans. They also contribute to groundwater 
pollution (Maletta et al., 2023)  
a. 2,4-Dinitrophenol (C6H4N2O5): used in the 

manufacture of explosives and pesticides, 
this compound is toxic to aquatic life and 
humans and posing a significant risk of 
environmental risk if released into water 
bodies (Gucbilmez, 2022).  
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b. 4-Nitrophenol (C6H5NO3): A by-product of 
industrial activities such as pesticide 
production, it harms aquatic organisms and 
accumulates in the environment (Kahru et 
al., 2002). 

3.1.4. Bisphenols 
Bisphenol A (BPA, C15H16O2), widely used 

in manufacturing plastics and epoxy resins, is 
recognized as an endocrine disruptor capable 
of interfering with hormonal functions in wildlife 
and humans. It contaminates water sources 
frequently (Kahru et al., 2002; Gucbilmez, 
2022). 

 
3.2. Environmental Impacts 
3.2.1. Aquatic Ecosystems 

The highwater solubility of phenolic 
chemicals facilitates their contamination of 

aquatic habitats, thereby reducing biodiversity. 
These substances interfere with the growth and 
reproduction of aquatic organisms, primarily 
affecting algae, fish, and microbes. For 
example, phenol concentration ranging from 9 
to 25 mg/L can be lethal to fish (Gucbilmez, 
2022). When phenolic chemicals are present at 
level exceeding safe thresholds, they can alter 
phytoplankton diversity significantly and 
leading to ecological disruption (El-Naeb et al., 
2022). Furthermore, phenolic chemicals can 
disrupt the physiological functions of aquatic 
species, resulting in increased mortality rates 
and genotoxic effects (Gad & Saad, 2008). 
Phenolic pollutants also affect biodiversity by 
altering microbial populations and degrading 
water quality (Saratale et al., 2020). 

 
Table 1. Guidelines at both national and international levels  

regarding the presence of phenolic compounds in water 

Compounds 

National Water Quality Standards (mg/L) 
Regulation of Drinking Water 

(mg/L) 

Indonesia Government Regulation 

No. 22 of 2021 
WHO  EPA 2023 

EC 

2020 

Class Ia Class IIb Class IIIc  Class IVd Water for Human Consumption 
Phenol  0.002 0.005  0.01  0.02  0,001    0,001  
Pentachlorophenol     0.009  0.001  

Dinitrophenol      0.007  0.001  
2,4,6- trichlorophenol     0.2   0,025 
Bisphenol             0.003  

a= Water for raw drinking water and other applications that necessitate a specific level of water quality. 
b= water for infrastructure and facilities, including recreational activities, freshwater fish cultivation, animal husbandry, crop irrigation, 

and other applications necessitating similar water quality standards. 
c= water for cultivating freshwater fish, livestock management, irrigation of crops, and other applications that require identical water 

quality standards. 
d= water for irrigation of crops and other applications that require a similar quality of water. 

 
3.2.2. Soil Pollution 

 Pentachlorophenol is a chlorinated phenol 
that adheres to soil particles and persists in the 
environment for extended periods while 
inhibiting microbial growth. It reduces soil 
fertility and hinders plant development. 
Furthermore, leaching from contaminated soils 
poses a threat to groundwater quality (Kahru et 
al., 2002).  

 
3.2.3. The Effect of Bioaccumulation on the 
Food Chain 

Many phenolic contaminants tend to 
bioaccumulate in organisms, transferring up 
the food chain and enhancing their harmful 
effects. This bioaccumulation can lead to long-
term health risk for higher organisms, including 

reproductive and developmental disorders both 
in humans and wildlife (Gad & Saad, 2008). 
3.2.4. Human Health Risk 

Numerous phenolic derivatives are 
recognized for their -high toxicity and their 
tendency to produce hazardous by-products 
during water treatment, such as 
polychlorinated dibenzo-n-dioxins (Taneeva et 
al., 2024). Humans’ exposure to phenolic 
chemicals can result in severe health 
complication. Endocrine disruptors such as BPA 
are associated with developmental delays, 
cancer, and reproductive issues. Chronic 
exposure can also damage the kidneys and liver 
(Kahru et al., 2002). 

Chlorination of raw water increases the risks 
of exposure to phenolic chemicals. The 
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production of chlorophenols in drinking water 
has been primarily attributed to the chlorination 
process (WHO, 2003). More stringent 
regulations are necessary because the elevated 
global levels indicate that current treatment 
methods are insufficient to completely 
eliminate phenolic compounds from water, 
posing significant risks to public health. 

Water potability recommendations provide 
acceptable values for water quality standards 
intended for human consumption. These 
regulations, which are currently not sufficiently 
stringent regarding emerging toxins such as 
phenolic compounds, must be enforce by public 
water systems (Ladeia Ramos et al., 2024). 
Table 1 lists the phenolic compounds that have 
reached the Maximum Permitted Concentration 
(MPC) for surface and drinking water, as 
specified in the national guidelines of the 
Indonesia government (Law No. 22/2021) and 
relevant international standards. 

 
3.3. Fungi-based strategies  

Phenol compounds are organic pollutants 
that degrade water quality and belong to the 
class of aromatic organic substances with the 
molecular formula C6H5OH. These compounds 
can be produced naturally by various organisms 
or released into the environment as raw 
effluent by multiple industries. When water 
containing chlorine react with phenolic 
chemicals, it forms complexes with unpleasant 
tastes and odors. The substitution of chlorine 
enhances these undesirable characteristics with 
harmful consequences (Almasi et al., 2019). 
Many phenolic compounds are dangerous due 
to their carcinogenic, mutagenic, teratogenic, 
and toxic properties. They can also disrupt the 
endocrine system. Even at low concentrations, 
they have a significant negative impact on 
aquatic ecosystems and human health 
(Alshabib & Onaizi, 2019; Singh et al., 2021). 
Due to their persistent and resistance to 
degradation, phenolic contaminants represent 
the major environment risk and treatment 
challenge. 

 
Table 2. Removal of phenolic pollutants by fungi and associated mechanisms 

Fungal strain Periods Compound Removal (%) Mechanism Reference 

Pleurotus ostreatus 
(P. ostreatus) 

10 days p-chlorophenol (CP) 99.2 
Biodegradation & 

Adsorption 
(Batista-García et al., 
2017) 

 phenol 98.7   

8 days Nonylphenol 70.0 
Biotransformation& 

Biosorption 
(Pezzella et al., 2017) 

 Bisphenol A 65.0   

5 weeks phenol 90.0 Enzymatic oxidation (Ntougias et al., 2015) 

P. dryinus  
Trametes hirsuta   
(T. hirsuta) 

30 days chlorophenols, >95.0 Biotransformation (Ariste et al., 2019) 

10 days p-chlorophenol (CP) 99.0 
Biodegradation & 

Adsorption 
(Batista-García et al., 
2017) 

 phenol 99.7   

30 days chlorophenols, >80.0 Biotransformation (Ariste et al., 2019) 

T. versicolor 
8 days Nonylphenol 85.0 Biotransformation& 

Biosorption 
(Pezzella et al., 2017) 

 Bisphenol A 100.0  

Tricoderma atroviride 
8 days Phenol 92.0 Lignocellulolytic 

enzymes 
(Kumar Vaidyanathan et 
al., 2022)  2, 4-dinitrophenol 91.0 

Cadophora sp.  10 days p-chlorophenol (CP) 73.0 
Biodegradation & 

Adsorption 
(Batista-García et al., 
2017) 

  phenol 91.2   

Phanerochaetea 
chrysosporium  

10 days p-chlorophenol (CP) 99.2 
Biodegradation & 

Adsorption 
(Batista-García et al., 
2017) 

 phenol 99.2   

8 days Nonylphenol 80.0 
Biotransformation & 

Biosorption 
(Pezzella et al., 2017) 

Pseudogymnoascus 
sp 

 Bisphenol A 60.0 
Biodegradation & 

Adsorption 
(Batista-García et al., 
2017) 

 p-chlorophenol (CP) 91.0 
 phenol 97.1 

Aspergillus caesiellus 
(A. caesiellus) 

 p-chlorophenol (CP) 89.0 
Biodegradation & 

Adsorption 
(Batista-García et al., 
2017) 

A. awamori 
 phenol 92.2 

Degradation (Stoilova et al., 2006) 
7-8 days phenol 85.0 

A. biennis 5 weeks phenol >80 Enzymatic oxidation (Ntougias et al., 2015) 
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Mycoremediation, a fungi-based treatment 
strategy, offers considerable potential for 
addressing phenolic. Fungi are well-known for 
their ability to degrade aromatic xenobiotics 
through their highly effective enzymatic 
biodegradation processes on wide range 
structural diverse of contaminants. Both live 
and dead cells, as well as their enzymes, have 
been studied for treating wastewater 
contaminated with phenolic compounds. 
Fungal species, including Ascomycetes, 
Aspergillus fumigatus, Debaryomyces, 
Aspergillus niger, dark septate endophyte fungi 
(DSE), and various Basidiomycetes have been 
studied for their ability in phenol degradation 
(Melati et al., 2021, 2023; Mtibaà et al., 2020; 
Jiang et al., 2017; Tebbouche et al., 2016; Kües, 
2015). Other fungi and their phenol reduction 
mechanism are summarized in Table 2.  

Various fungal strains from diverse 
taxonomic groups, have shown the ability to 
eliminate, break down, and completely degrade 
phenols in liquid environments, primarily 
through co-metabolism. Fungi employ several 
mechanisms for phenol removal, including 
sorption, oxidative and reductive dechlorination, 
conjugation, ring cleavage, mineralization, and 
polymerization (Tomasini & Leon-santiesteban, 
2019). 

Table 2 shows that white rot fungi (WRF) 
groups such as Pleurotus sp., Trametes sp., 
and Phaenorocytes sp. are commonly reported 
as phenol degraders with high removal 
efficiency. Similarly, filamentous fungi such as 
Aspergillus sp. are frequently studied for phenol 
mycoremediation.  

However, several factors, including pH, 
temperature, oxygen availability, substrate 
concentration, fungal species, and 
immobilization methods, influence the 
efficiency of mycoremediation in phenolic 
compounds removal from aqueous solution. 
Understanding these parameters is crucial to 
enhancing fungal growth, enzyme activity, and 
elimination of phenolic pollutants. 

  
a. The pH of the Medium 

The pH levels significantly impact fungi 
growth and the activity of ligninolytic enzymes 
responsible for phenol degradation by. For 
examples, Aspergillus niger and Trametes 
versicolor thrive in neutral pH settings (6-7.2) 

(Siva Kumar et al., 2009; Supriya & Neehar, 
2014). This neutral pH is optimal for the activity 
of the ligninolytic enzymessuch as laccases, 
manganese peroxidases, and lignin peroxidases 
(LiPs). Conversely, extreme pH level can 
denature enzymes and inhibit fungal metabolic 
processes. Additionally, under such condition, 
the positive charges on amino groups in fungal 
cell wall , allow them to act as potential 
absorbers of phenolic compounds (Siva Kumar 
et al., 2009). These findings underscore the 
importance of maintaining appropriate pH 
levels in bioremediation processes. 

 
b. Temperature  

Temperature strongly affects fungal phenol 
degradation, with optimal range varying by 
species. Studies indicate that temperature is 
essential in improving the effectiveness of 
phenol degradation processes. It is necessary 
to regulate the fungal enzyme synthesis and 
the metabolism (Sivasubramanian & 
Namasivayam, 2015). Fungi associated with 
phenol cleanup often exhibit their most efficient 
degradation rates between 25°C and 35°C. 
Elevated or decreased deviations from this 
range may cause denaturation of the enzyme 
or inhibit fungus growth. For instance, 
Aspergillus niger inhibits peak degradation 
efficiency at 35°C, while a significant reduction 
is observed below25°C or above 40°C (Supriya 
& Neehar, 2014). Similarly, Magnusiomyces 
capitatus QWD1 and Penicillium janthinellum 
N12 P6C3 show optimal performance at 35 °C 
(Hanafee et al., 2019; Wang et al., 2019). In 
contrast, Aspergillus flavus and Aspergillus 
nomius SGFA1 achieve maximum phenol 
degradation at 25 and 28. 1 oC, repectiveely 
(Zanin et al., 2014; Liu et al., 2023).  
 
c. Oxygen Availability 

Optimal oxygen availability for phenol 
degradation depends on the fungal strain and 
environment conditions. Research has 
demonstrated that different types of fungi have 
distinct preferences for oxygen concentrations, 
which are essential to their ability to degrade 
phenol compounds. Aerobic environment 
generally enhance phenol breakdown, as 
demonstrated by Candida tropicalis SDP-1, 
which effectively degraded 1200 mg/L of 
phenol within 40 hours under optimal condition 
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of pH 8, 35°C, and agitation (Gong et al., 
2021). Similarly, Debaryomyces species exhibit 
efficient phenol degradation at  pH 6.0 and 200 
rpm agitation (Jiang et al., 2016). Furthermore, 
Magnusiomyces capitatus QWD1 demonstrated 
superior performance in activated sludge 
environments, suggesting that oxygen levels 
can optimize degradation process (Wang et al., 
2019).  These findings highlight the need for 
tailored oxygenation strategies in fungal 
bioremediation.  

 
d. Phenol Concentration  

High concentrations of phenol can inhibit 
fungal growth due to its toxic effect on cellular 
membranes and metabolic processes. While 
certain fungi tolerate moderate phenol 
concentrations, their degradation efficiency 
diminishes at elevated levels. Stoilova et al. 
(2007) investigated the biodegradation of 
phenols and their derivatives by Aspergillus 
awamori at various concentrations (0.3, 0.6, 
1.2, and 3 g/L) andfound that the fungus’s 
ability to degrade phenol decrease significantly 
at concentration above 0.6 g/L. Conversely, 
fungal strains such as Graphium sp. and 
Phanerochaete chrysosporium effectively 
degrade phenol at concentrations of 0.3 and 
0.05 g/L, respectively, (Kennes & Lema, 1994; 
Santos et al., 2003;). Additionally,  endophytic 
fungi demonstrated phenol tolerance and 
degradation at concentrations as high as 0.8% 
(Khalil et al., 2021).  

 
e. Fungal Species and Enzymes Involved  

Different fungal species and strains exhibit 
varying levels of phenol tolerance and 
degradation capabilities, largely due to their 
enzymatic systems. Among various fungal 
species, Basidiomycetes have emerged as 
promising candidates for phenolic 
mycoremediation due to their ability to degrade 
a wide range of persistent aromatic pollutants. 
This ability is attributed to the secretion of 
intracellular enzymes, such ascytochrome P450 
monooxygenases, and the activity of external 
peroxidases, including laccase, manganese 
peroxidase, and lignin peroxidase  (Yan et al., 
2017; Mtibaà et al., 2020). The enhanced 
capability of Basidiomycota for phenol 
biodegradation is largely due to their 
production of a diverse range of phenol-

degrading enzymes, such as laccases, 
tyrosinases, and various forms of manganese 
and lignin peroxidases (Kües, 2015). 
Furthermore, Ascomycetous fungi surpass 
white-rot fungi (WRF) in pollutant degradation 
due to their ability to survive under low oxygen 
concentrations, acidic pH, or ligninolytic 
substrates, condition that often influence 
enzymatic activity (Aranda, 2016; Mtibaà et al., 
2020). The degradation of endocrine-disrupting 
chemicals (EDCs) has also been shown to 
require the presence of cytochrome P450 
enzymes, which act as crucial oxidizing agents 
(Nowak et al., 2019; Mtibaà et al., 2020). 
Additionally, the biodegradation of 2,4-
dichlorophenol (2-4-DCP), nonylphenols (NPs), 
and 4-tert-octylphenol (OP) was assessed using 
the Ascomycetous fungus Thielavia sp. HJ22. 
This strain efficiently degraded 100%, 95%, 
and 80% of 4-tert-OP, NPs, and 2,4-DCP in less 
than eight hours, respectively. Cytochrome 
P450 monooxygenase and laccase enzyme 
from Ascomycetous fungi play essential roles  in 
breaking down these phenolic pollutants 
(Mtibaà et al., 2020).  

Numerous fungi enzymatic pathways that 
aid in the conversion of phenolic chemicals into 
less hazardous forms are the main component 
of the fungal enzymes' process of phenol 
degradation. Important enzymes that use 
various methods to accomplish degradation, 
such as phenol hydroxylases, catechol 
dioxygenases, laccase and peroxidase are 
essential to this process. Phenol hydroxylase 
catalyzes the first hydroxylation of phenol to 
catechol (van Schie & Young, 2000). Then, 
catechol dioxygenases break down catechol via 
ortho or meta routes, producing non-toxic 
byproducts. For example, catechol 2,3-
dioxygenase is used by Nocardia 
hydrocarbonoxydans for meta cleavage (Shetty 
& Shetty, 2016). Additionally, phenol 
hydroxylases can also hydroxylate catechol to 
produce pyrogallol. Further, phenol 
hydroxylase activity can be inhibited by high 
phenol concentrations, but catechol 
dioxigenase showed no effect (Radziff et al., 
2021). The peroxygenase mechanism in certain 
fungi, such those that produce hemoglobin 
dehaloperoxidase, involves the Fe═O center 
abstracting hydrogen atoms, which aids in the 
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breakdown of chlorophenols (Zhang et al., 
2021).  

Laccases efficiently detoxify phenols by 
catalyzing the oxidation of phenolic compounds 
through electron transfer processes and 
promote the breakdown of harmful phenolic 
compounds (Shanmugapriya et al., 2019; Li et 
al., 2024). Laccases are found in many fungi 
and are especially good at breaking down 
phenolic contaminants and lignin 
(Shanmugapriya et al., 2019). Two important 
peroxidases enzymes that use hydrogen 
peroxide to oxidize phenolic compounds are 
lignin peroxidase (LiP) and manganese 
peroxidase (MnP) (Terrazas-Siles et al., 2005; 
Dashtban et al., 2010). The LiP mechanism 
involved oxidative cleavage, electron ransfer 
and substrate versality. LiP catalyzes the 
oxidative cleavage of C-C and C-O-C bonds in 
aromatic non-phenolic compounds, which are 
generally more resistant to degradation (Wong, 
2009). According to Higuchi (2004) the enzyme 
oxidizes lignin directly at the protein surface by 
long-range electron transfer. LiP's usefulness in 
detoxification procedures is increased by its 
ability to function on a range of substrates, 
including those with high redox potential 
(Wang et al., 2018). While MnP involved 
manganese cycling and catechol-mediated 
mechanism. The manganese cycle is facilitated 
by MnP's oxidation of Mn(II) to Mn(III), which 
also oxidizes mediators that aid in the 
breakdown of non-phenolic substrates (Wong, 
2009). A catechol-mediated cycle is involved in 
the early phases of phenol degradation by MnP, 
which results in the production of several 
oxidation products such benzoquinone and 
hydroquinone (Xu et al., 2017)  

 
f. Immobilization Techniques 

Immobilized materials are of great interest 
in the biodegradation of phenolic pollutants due 
to their ability to prevent the formation of 
harmful by-products. Phenol biodegradation 
was assessed using Debaryomyces species 
encapsulated in calcium alginate beads and 
nanoscale Fe3O4. The results indicated that 
approximately 900 mg/L of phenol was 
degraded within 80 hours, with removal 
efficiency of over 99.9%. Furthermore, it was 
demonstrated that the encapsulated 
Debaryomyces species in the calcium alginate 

beads could be reused for up to 10 cycles (Jiang 
et al., 2017). To enhance the efficacy of 
mycoremediation when applied to naturally 
occurring wastewater, the addition of co-
substrate is often required. However, this 
approach is typically viewed unfavorably due to 
the associated increased cost (Ariste et al., 
2019).  

 
4. Conclusion 

The present review describes the types of 
phenol, their impact on various environment 
and a fungi-based treatment. Various types of 
phenols are found in wastewater, including 
simple phenols, chlorophenols, nitrophenol, 
and bisphenol. They are poisonous, dangerous, 
endocrine disrupting, mutagenic, teratogenic, 
and/or carcinogenic, and seriously harm the 
environment. Fungi can effectively remove 
dangerous phenolic chemicals from 
wastewater. As an eco-friendly and sustainable 
approach, it offers a viable solution for 
mitigating pollution, improving water quality, 
and supporting biodiversity in aquatic 
ecosystems. Mycoremediation technology 
provide a more economical, sustainable, and 
environmentally friendly alternative to physico-
chemical methods for wastewater treatment. In 
recent years, research has primarily focused on 
analyzing the effects of various conditions on 
the phenol degradation and evaluating 
mycoremediation's effectiveness under 
controlled experiment environments. Effort 
have also been directed toward optimizing the 
degradation processes to enhance fungal 
performance. Apart from being able to remove 
phenolic pollutant, the integration of 
mycoremediation into management practices 
can promote water sustainability on a global 
scale.   

However, significant gaps remain in the 
literature, particularly regarding the toxicity 
assessment of degradation by-products, the 
application of synthetic biology methods for 
chassis modification, development of 
innovative immobilization methods,  creation of 
innovative immobilization methods,  
investigation of improving remediation 
efficiency by integrating fungal bioremediation 
with other technologies, including chemical 
oxidation, biochar, phycoremediation or 
phytoremediation and scalability of 
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mycoremediation for practical wastewater 
treatments. These areas warrant further 
research to advance the field. 
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