A Review on High-Temperature Steam Oxidation Resistance of Zirconium Cladding Materials Subjected to Plasma Electrolysis
DOI:
https://doi.org/10.55981/urania.2025.12906Keywords:
Pressurized Water Reactor, cladding materials, zirconium alloys, plasma electrolysis, steam oxidation resistanceAbstract
Zirconium alloys, such as Zircaloy-4 and ZIRLO, are the standard cladding materials in pressurized water reactors (PWR) due to their low neutron absorption and corrosion resistance. Yet, under loss-of-coolant accident conditions, rapid steam oxidation above 900 °C accelerates hydrogen uptake, embrittlement, and cladding failure. Plasma electrolysis (PE) has emerged as a promising surface modification strategy, directly converting the Zr surface into a ZrO₂-based ceramic layer with strong adhesion, phase stability, and enhanced oxidation resistance. This review provides a comprehensive overview of PE coating formation, emphasizing anodic oxidation, plasma microdischarge, and incorporation of electrolyte-derived elements that tailor microstructure and tetragonal ZrO₂ stabilization. Comparative assessments show that PE-coated claddings delay breakaway oxidation, suppress oxygen diffusion, and maintain structural integrity better than bare alloys or many physical vapor–deposited coatings. The influence of coolant chemistry, irradiation effects, and thermal cycling on long-term coating durability is also evaluated. Remaining challenges include controlling thickness, mitigating phase transformation, and ensuring irradiation stability. Addressing these issues will be critical to realizing PE-coated zirconium as a viable accident-tolerant fuel cladding for advanced nuclear reactors.
References
[1] A. T. Motta et al., “Hydrogen in zirconium alloys: A review,” Journal of Nuclear Materials, vol. 518, pp. 440–460, May 2019, doi: 10.1016/J.JNUCMAT.2019.02.042.
[2] Z. Cui et al., “Role of microchannels in breakaway oxidation of Zr alloy under high-temperature steam oxidation at 1000 ℃,” Corros Sci, vol. 199, p. 110204, May 2022, doi: 10.1016/j.corsci.2022.110204.
[3] T. R. Allen, R. J. M. Konings, and A. T. Motta, “Corrosion of Zirconium Alloys,” in Comprehensive Nuclear Materials, Elsevier, 2012, pp. 49–68. doi: 10.1016/B978-0-08-056033-5.00063-X.
[4] A. T. Motta, A. Couet, and R. J. Comstock, “Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding,” Annu Rev Mater Res, vol. 45, no. 1, pp. 311–343, Jul. 2015, doi: 10.1146/annurev-matsci-070214-020951.
[5] S. J. Zinkle, K. A. Terrani, J. C. Gehin, L. J. Ott, and L. L. Snead, “Accident tolerant fuels for LWRs: A perspective,” Journal of Nuclear Materials, vol. 448, no. 1–3, pp. 374–379, May 2014, doi: 10.1016/j.jnucmat.2013.12.005.
[6] E. B. Kashkarov, D. V. Sidelev, M. S. Syrtanov, C. Tang, and M. Steinbrück, “Oxidation kinetics of Cr-coated zirconium alloy: Effect of coating thickness and microstructure,” Corros Sci, vol. 175, p. 108883, Oct. 2020, doi: 10.1016/j.corsci.2020.108883.
[7] N. M. A. Mohamed, “Cladding of nuclear fuel with iron based alloy: Penalty and solution,” Progress in Nuclear Energy, vol. 165, p. 104931, Nov. 2023, doi: 10.1016/j.pnucene.2023.104931.
[8] C. Tang, M. Stueber, H. J. Seifert, and M. Steinbrueck, “Protective coatings on zirconium-based alloys as accident-Tolerant fuel (ATF) claddings,” Corrosion Reviews, vol. 35, no. 3, pp. 141–165, Aug. 2017, doi: https://doi.org/10.1515/corrrev-2017-0010.
[9] F. Al Afghani and A. Anawati, “Plasma electrolytic oxidation of zircaloy-4 in a mixed alkaline electrolyte,” Surf Coat Technol, vol. 426, p. 127786, Nov. 2021, doi: 10.1016/j.surfcoat.2021.127786.
[10] M. K. Ajiriyanto and A. Anawati, “Ultrasonication assisted plasma electrolytic oxidation accelerated growth of SiO2/ZrO2 coating on zircaloy-4,” Surf Coat Technol, vol. 456, p. 129261, Mar. 2023, doi: 10.1016/j.surfcoat.2023.129261.
[11] M. K. Ajiriyanto and A. Anawati, “Optimizing additive Y2O3 concentration for improving corrosion resistance of ceramic coatings formed by plasma electrolytic oxidation on Zr-4 alloy,” J Phys D Appl Phys, vol. 57, no. 45, p. 455207, Nov. 2024, doi: 10.1088/1361-6463/ad6d79.
[12] A. V. Apelfeld, A. A. Ashmarin, A. M. Borisov, A. V. Vinogradov, S. V. Savushkina, and E. A. Shmytkova, “Formation of zirconia tetragonal phase by plasma electrolytic oxidation of zirconium alloy in electrolyte comprising additives of yttria nanopowder,” Surf Coat Technol, vol. 328, pp. 513–517, Nov. 2017, doi: 10.1016/j.surfcoat.2016.09.071.
[13] S. Arun, T. Arunnellaiappan, and N. Rameshbabu, “Fabrication of the nanoparticle incorporated PEO coating on commercially pure zirconium and its corrosion resistance,” Surf Coat Technol, vol. 305, pp. 264–273, Nov. 2016, doi: 10.1016/j.surfcoat.2016.07.086.
[14] Y. M. Wang et al., “Degradation and structure evolution in corrosive LiOH solution of microarc oxidation coated Zircaloy-4 alloy in silicate and phosphate electrolytes,” Appl Surf Sci, vol. 431, pp. 2–12, Feb. 2018, doi: 10.1016/j.apsusc.2017.04.226.
[15] N. Nashrah, M. P. Kamil, D. K. Yoon, Y. G. Kim, and Y. G. Ko, “Formation mechanism of oxide layer on AZ31 Mg alloy subjected to micro-arc oxidation considering surface roughness,” Appl Surf Sci, vol. 497, p. 143772, Dec. 2019, doi: 10.1016/j.apsusc.2019.143772.
[16] Y. Cheng, T. Wang, S. Li, Y. Cheng, J. Cao, and H. Xie, “The effects of anion deposition and negative pulse on the behaviours of plasma electrolytic oxidation (PEO)—A systematic study of the PEO of a Zirlo alloy in aluminate electrolytes,” Electrochim Acta, vol. 225, pp. 47–68, Jan. 2017, doi: 10.1016/j.electacta.2016.12.115.
[17] L. Zhang, W. Zhang, Y. Han, and W. Tang, “A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating fabricated by micro-arc oxidation for hip joint prosthesis,” Appl Surf Sci, vol. 361, pp. 141–149, Jan. 2016, doi: 10.1016/j.apsusc.2015.11.132.
[18] L. Liu et al., “Growth mechanism of plasma electrolytic oxidation coating of Zr alloys revealed by layer-specific phase analyses,” Appl Surf Sci, vol. 702, p. 163336, Sep. 2025, doi: 10.1016/j.apsusc.2025.163336.
[19] N. Attarzadeh and C. V. Ramana, “Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and ZrAlloys: Part I—Growth Mechanisms, Microstructure, and Chemical Composition,” Coatings, vol. 11, no. 6, p. 634, May 2021, doi: 10.3390/coatings11060634.
[20] Y. Yan, Y. Han, and J. Huang, “Formation of Al2O3–ZrO2 composite coating on zirconium by micro-arc oxidation,” Scr Mater, vol. 59, no. 2, pp. 203–206, Jul. 2008, doi: 10.1016/j.scriptamat.2008.03.015.
[21] H. Guan, Q. Zhou, C. Xu, X. Jin, J. Du, and W. Xue, “High-temperature degradation behavior of PEO-coated ZIRLO alloy in N2 and N2+steam environments at 900 and 1000 °C,” Journal of Nuclear Materials, vol. 597, p. 155091, Aug. 2024, doi: 10.1016/j.jnucmat.2024.155091.
[22] G. Jiang, D. Xu, J. Liu, J. Yang, Y. Li, and W. Kuang, “Corrosion protection and failure mechanism of ZrO2 coating on zirconium alloy Zry-4 under varied LiOH concentrations in lithiated water at 360 °C/18.5 MPa,” Appl Surf Sci, vol. 650, p. 159173, Mar. 2024, doi: 10.1016/j.apsusc.2023.159173.
[23] Z. Li, M. Zheng, Z. Yang, Q. Ren, Z. Cai, and Y. Jiao, “Characterization and corrosion behavior of plasma electrolytic oxidation coating on zirconium alloy in superheated steam condition,” Surf Coat Technol, vol. 466, p. 129657, Aug. 2023, doi: 10.1016/j.surfcoat.2023.129657.
[24] J. Zhang, Y. Hu, L. Tu, F. Sun, M. Yao, and B. Zhou, “Corrosion behavior and oxide microstructure of Zr-1Nb- x Ge alloys corroded in 360 °C/18.6 MPa deionized water,” Corros Sci, vol. 102, pp. 161–167, Jan. 2016, doi: 10.1016/j.corsci.2015.10.005.
[25] O. H. Kwon et al., “Short communication: ‘Effect of Nb on the electrical resistivity of ZrO2 layer formed on Zr alloys,’” Journal of Nuclear Materials, vol. 536, p. 152202, Aug. 2020, doi: 10.1016/j.jnucmat.2020.152202.
[26] G. Jiang, D. Xu, W. Yang, L. Liu, Y. Zhi, and J. Yang, “High-temperature corrosion of Zr–Nb alloy for nuclear structural materials,” Progress in Nuclear Energy, vol. 154, p. 104490, Dec. 2022, doi: 10.1016/j.pnucene.2022.104490.
[27] X. Wang et al., “High temperature oxidation of Zr 1Nb alloy with plasma electrolytic oxidation coating in 900–1200 °C steam environment,” Surf Coat Technol, vol. 407, p. 126768, Feb. 2021, doi: 10.1016/j.surfcoat.2020.126768.
[28] H. Uetsuka, T. Furuta, and S. Kawasaki, “Embrittlement of Zircaloy-4 due to Oxidation in Environment of Stagnant Steam,” J Nucl Sci Technol, vol. 19, no. 2, pp. 158–165, Feb. 1982, doi: 10.1080/18811248.1982.9734128.
[29] H. Guan et al., “Effects of steam concentration and flow rate on the high temperature oxidation of PEO-coated zirconium alloy at 1000 °C and 1200 °C,” Surf Coat Technol, vol. 448, p. 128896, 2022, doi: https://doi.org/10.1016/j.surfcoat.2022.128896.
[30] K. Wei et al., “Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300 °C/14 MPa lithium borate buffer solutions,” Corros Sci, vol. 181, p. 109216, Apr. 2021, doi: 10.1016/j.corsci.2020.109216.
[31] K. Wei et al., “Zeta potential of microarc oxidation film on zirlo alloy in different aqueous solutions,” Corros Sci, vol. 143, pp. 129–135, Oct. 2018, doi: 10.1016/j.corsci.2018.08.006.
[32] H.-B. Ma et al., “Oxidation behavior of Cr-coated zirconium alloy cladding in high-temperature steam above 1200 °C,” Npj Mater Degrad, vol. 5, no. 1, p. 7, Feb. 2021, doi: 10.1038/s41529-021-00155-8.
[33] J. Deng, D. Geng, Q. Sun, Z. Song, and J. Sun, “Steam oxidation of Cr-coated zirconium alloy claddings at 1200 °C: Kinetics transition and failure mechanism of Cr coatings,” Journal of Nuclear Materials, vol. 586, p. 154684, Dec. 2023, doi: 10.1016/j.jnucmat.2023.154684.
[34] E. B. Kashkarov, D. V. Sidelev, N. S. Pushilina, J. Yang, C. Tang, and M. Steinbrueck, “Influence of coating parameters on oxidation behavior of Cr-coated zirconium alloy for accident tolerant fuel claddings,” Corros Sci, vol. 203, p. 110359, Jul. 2022, doi: 10.1016/j.corsci.2022.110359.
[35] W. Wang, G. Zhang, C. Wang, T. Wang, Y. Zhang, and T. Xin, “Construction of Cr coatings with different columnar structure on Zircaloy-4 alloys to optimize the high-temperature steam oxidation behavior for accident tolerant fuel claddings,” J Alloys Compd, vol. 946, p. 169385, Jun. 2023, doi: 10.1016/j.jallcom.2023.169385.
[36] Q. S. Chen et al., “Microstructure and high-temperature steam oxidation properties of thick Cr coatings prepared by magnetron sputtering for accident tolerant fuel claddings: The role of bias in the deposition process,” Corros Sci, vol. 165, p. 108378, Apr. 2020, doi: 10.1016/j.corsci.2019.108378.
[37] J.-H. Park, H.-G. Kim, J. Park, Y.-I. Jung, D.-J. Park, and Y.-H. Koo, “High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings,” Surf Coat Technol, vol. 280, pp. 256–259, Oct. 2015, doi: 10.1016/j.surfcoat.2015.09.022.
[38] T. Jung, H. Jang, Y. K. Cho, and D. Jang, “Degradation behavior of chromium-coated zirconium cladding under 1200 oC steam oxidation according to the coating microstructure,” Journal of Nuclear Materials, vol. 603, p. 155360, Jan. 2025, doi: 10.1016/j.jnucmat.2024.155360.
[39] Y. Peng, P. Du, Y. Liu, H. Wang, S. Liu, and W. Zhang, “Investigation on Microstructures and High-Temperature Oxidation Resistance of Cr Coatings on Zircaloy-4 by Multi-Arc Ion Plating Technology,” Materials, vol. 15, no. 19, p. 6755, Sep. 2022, doi: 10.3390/ma15196755.
[40] B. Maier et al., “Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding,” Journal of Nuclear Materials, vol. 519, pp. 247–254, Jun. 2019, doi: 10.1016/j.jnucmat.2019.03.039.
[41] M. Syrtanov, E. Kashkarov, A. Abdulmenova, K. Gusev, and D. Sidelev, “High-Temperature Steam Oxidation of Accident-Tolerant Cr/Mo-Coated Zr Alloy at 1200–1400 °C,” Coatings, vol. 13, no. 1, p. 191, Jan. 2023, doi: 10.3390/coatings13010191.
[42] S. Zeng et al., “Improved oxidation resistance of Cr-Si coated Zircaloy with an in-situ formed Zr2Si diffusion barrier,” Npj Mater Degrad, vol. 7, no. 1, p. 56, Jul. 2023, doi: 10.1038/s41529-023-00373-2.
[43] X. Wang et al., “Effect of PEO interlayer on oxidation behavior of PEO/Cr composite coating on Zr–1 Nb alloy in 1200 °C steam,” Corros Sci, vol. 226, p. 111676, Jan. 2024, doi: 10.1016/j.corsci.2023.111676.
[44] Q. Zhou et al., “Effects of Al and Si elements on oxidation behavior in 1000–1200 °C steam for PEO/CrAlSi composite coating on Zr alloy,” Surf Coat Technol, vol. 482, p. 130705, Apr. 2024, doi: 10.1016/j.surfcoat.2024.130705.
[45] J. Hu et al., “Effect of neutron and ion irradiation on the metal matrix and oxide corrosion layer on Zr-1.0Nb cladding alloys,” Acta Mater, vol. 173, pp. 313–326, Jul. 2019, doi: 10.1016/j.actamat.2019.04.055.
[46] Y. Liu et al., “Irradiation response of Al2O3-ZrO2 ceramic composite under He ion irradiation,” J Eur Ceram Soc, vol. 41, no. 4, pp. 2883–2891, Apr. 2021, doi: 10.1016/j.jeurceramsoc.2020.11.042.
[47] A. V. Apelfeld et al., “The study of plasma electrolytic oxidation coatings on Zr and Zr-1% Nb alloy at thermal cycling,” Surf Coat Technol, vol. 269, pp. 279–285, May 2015, doi: 10.1016/j.surfcoat.2015.02.039.
[48] Z. Li, Z. Cai, X.-J. Cui, R. Liu, Z. Yang, and M. Zhu, “Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy,” Surf Coat Technol, vol. 410, p. 126949, Mar. 2021, doi: 10.1016/j.surfcoat.2021.126949.
[49] M. Karimi, M. Jafari Eskandari, and M. Araghchi, “Fabrication and characterization of graphene oxide/zirconium dioxide coatings produced by plasma electrolytic oxidation of Zr–1%Nb alloys,” Results in Surfaces and Interfaces, vol. 14, p. 100205, Feb. 2024, doi: 10.1016/j.rsurfi.2024.100205.
[50] G. Pu et al., “Effects of He ion irradiation on the microstructures and mechanical properties of t’ phase yttria-stabilized zirconia ceramics,” J Alloys Compd, vol. 771, pp. 777–783, Jan. 2019, doi: 10.1016/j.jallcom.2018.08.259.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nisa Nashrah, Cahya Krisnawati Marbun, Akbar Ridho Saputra, Juan Carlos Sihotang

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

