Effect of Gamma Irradiation on Crosslink Density and Chemical Characteristics of Gadolinium Oxide-Natural Rubber Vulcanizate Composite
DOI:
https://doi.org/10.55981/urania.2025.13522Keywords:
FTIR, gamma irradiation, Gd₂O₃, natural rubber, SiO2Abstract
Natural rubber is a polymer that has been widely used in various industrial applications because of its high flexibility. In this study, vulcanizates were developed from SiO2-reinforced natural rubber with added Gd₂O₃. Vulcanizate composites containing 0, 5, and 10 phr of Gd₂O₃ were fabricated to evaluate the combined effect of inorganic fillers and gamma irradiation. All composites were irradiate with gamma rays at a dose of 100 kGy and were evaluated for their chemical characteristic, swelling behavior, and crosslink density. Fourier Transform Infrared (FTIR) analysis showed that gamma irradiation induces significant structural changes in the natural rubber vulcanizate. These changes were confirmed by the emergence of new absorption peaks assigned to O-H and C=C groups in the FTIR spectra. Swelling and crosslink density measurements showed that gamma irradiation increased the vulcanizate’s crosslink density, indicating the formation of a stiffer polymer network. On average, the crosslink density increased by approximately 11%, accompanied by a 9.07% decrease in swelling. These finding highlight the synergistic role of SiO2 and Gd₂O₃ under gamma irradiation in improving the integrity of natural rubber based composites.
References
[1] A. Ansarifar, A. Azhar, N. Ibrahim, S. F. Shiah, and J. M. D. Lawton, “The use of a silanised silica filler to reinforce and crosslink natural rubber,” vol. 25, pp. 77–86, 2005, doi: 10.1016/j.ijadhadh.2004.04.002.
[2] R. Walvekar, Z. M. Afiq, S. Ramarad, and S. Khalid, “Devulcanization of Waste Tire Rubber Using Amine Based Solvents and Ultrasonic Energy,” MATEC Web Conf., vol. 152, 2018, doi: 10.1051/matecconf/201815201007.
[3] Y. Chen, Z. Peng, L. X. Kong, M. F. Huang, and P. W. Li, “Natural Rubber Nanocomposite Reinforced With Nano Silica *,” pp. 2–5, 2008, doi: 10.1002/pen.
[4] Y. Jin, C. Wang, L. Wang, and J. Chen, “Improved mechanical properties of natural rubber composites reinforced by novel SiO 2 @ HCNFs nanofillers at a low filler loading,” no. December 2019, pp. 1–8, 2020, doi: 10.1002/app.49225.
[5] S. Y. Yang, L. Liu, Z. X. Jia, W. W. Fu, D. M. Jia, and Y. F. Luo, “Study on the structure-properties relationship of natural rubber / SiO 2 composites modified by a novel multi-functional rubber agent,” no. August 2014, 2015, doi: 10.3144/expresspolymlett.2014.46.
[6] W. Poltabtim et al., “Dual X-ray- and Neutron-Shielding Properties of Gd2O3/NR Composites with Autonomous Self-Healing Capabilities,” Polymers (Basel)., vol. 14, no. 21, pp. 1–16, 2022, doi: 10.3390/polym14214481.
[7] Y. He, P. Li, H. Ren, X. Zhang, X. Chen, and Y. Yan, “The fabrication and neutron shielding property of polyphenylene sulfide containing salicylic acid/Gd2O3 composites,” High Perform. Polym., vol. 34, no. 1, pp. 105–114, 2022, doi: 10.1177/09540083211021492.
[8] H. Ito et al., “Analyzing the neutron and γ-ray emission properties of an americium–beryllium tagged neutron source,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 1057, 2023, doi: 10.1016/j.nima.2023.168701.
[9] E. K. Elmaghraby, S. Abdelaal, A. M. Abdelhady, S. Fares, S. Salama, and N. A. Mansour, “Correspondence and difference between gamma-ray and neutron irradiation effects on organic materials in marine environment,” Egypt. J. Aquat. Biol. Fish., vol. 23, no. 5 Special Issue, pp. 1–16, 2019, doi: 10.21608/ejabf.2019.63408.
[10] M. A. M. Ali, K. F. El-Nemr, A. A. Hamada, and W. S. Abd-Elhady, “Effect of gamma-irradiation on the mechanical behavior of EPDM rubber-recycled newsprint microfibers composites,” J. Vinyl Addit. Technol., vol. 25, no. 2, pp. 198–212, 2019, doi: 10.1002/vnl.21653.
[11] K. F. El-Nemr and R. M. Mohamed, “Sorbic acid as friendly curing agent for enhanced properties of ethylene propylene diene monomer rubber using gamma radiation,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 54, no. 10, pp. 711–719, 2017, doi: 10.1080/10601325.2017.1322469.
[12] R. O. Aly, “Influence of gamma irradiation on mechanical and thermal properties of waste polyethylene/nitrile butadiene rubber blend,” Arab. J. Chem., vol. 9, pp. S1547–S1554, 2016, doi: 10.1016/j.arabjc.2012.04.007.
[13] S. G. Prasad, C. Lal, K. R. Sahu, A. Saha, and U. De, “Spectroscopic investigation of degradation reaction mechanism in γ-rays irradiation of HDPE,” Biointerface Res. Appl. Chem., vol. 11, no. 2, pp. 9405–9419, 2021, doi: 10.33263/BRIAC112.94059419.
[14] A. M. de Azevedo et al., “Ionizing Radiation and Its Effects on Thermoplastic Polymers: An Overview,” Polymers (Basel)., vol. 17, no. 8, pp. 1–36, 2025, doi: 10.3390/polym17081110.
[15] M. K. Hasan, D. Staack, S. D. Pillai, L. S. Fifield, and M. Pharr, “Connecting radiation-driven changes in structural, thermal, and mechanical properties in several medical device polymers,” Polym. Degrad. Stab., vol. 221, no. December 2023, p. 110677, 2024, doi: 10.1016/j.polymdegradstab.2024.110677.
[16] T. Zaharescu, M. Bumbac, C. M. Nicolescu, M. D. Stelescu, T. Borbath, and I. Borbath, “Evaluation of γ-Irradiation Effects on EPDM/SBS Blends for Durability and Recycling Potential,” Polymers (Basel)., vol. 17, no. 10, 2025, doi: 10.3390/polym17101314.
[17] N. A. S. Faizal et al., “The effects of devulcanize microwave radiation time on crosslink density of EPDM waste/natural rubber blend,” AIP Conf. Proc., vol. 2332, no. February, 2021, doi: 10.1063/5.0042931.
[18] N. Ashok and M. Balachandran, “Effect of nanoclay and nanosilica on carbon black reinforced EPDM/CIIR blends for nuclear applications,” Mater. Res. Express, vol. 6, no. 12, 2019, doi: 10.1088/2053-1591/ab6765.
[19] A. T. Naikwadi, B. K. Sharma, K. D. Bhatt, and P. A. Mahanwar, “Gamma Radiation Processed Polymeric Materials for High Performance Applications: A Review,” Front. Chem., vol. 10, no. March, pp. 1–15, 2022, doi: 10.3389/fchem.2022.837111.
[20] A. B. Moustafa, R. Mounir, A. A. El Miligy, and M. A. Mohamed, “Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends,” Arab. J. Chem., vol. 9, pp. S124–S129, 2016, doi: 10.1016/j.arabjc.2011.02.020.
[21] N. H. Lazim, S. A. Shamsudin, and N. Mohd Hidzir, “Mechanical and thermal studies on modified 50/50 natural rubber latex/poly(styrene-block-isoprene-block-styrene) blend by gamma irradiation and comparison with sulphur and peroxide vulcanization methods,” Radiat. Phys. Chem., vol. 207, no. 110857, 2023, doi: 10.1016/j.radphyschem.2023.110857.
[22] N. Chuma, W. Chueangchayaphan, K. Chino, and J. Intapun, “Enhancing Performance of Silica-Filled Isoprene Rubber: The Synergistic Role of Urea and Silane Coupling Agent,” ACS Omega, vol. 10, no. 39, pp. 45767–45777, 2025, doi: 10.1021/acsomega.5c06243.
[23] D. Mondal, S. Ghorai, D. Rana, D. De, and D. Chattopadhyay, “The rubber–filler interaction and reinforcement in styrene butadiene rubber/devulcanize natural rubber composites with silica–graphene oxide,” Polym. Compos., vol. 40, no. S2, pp. E1559–E1572, 2019, doi: 10.1002/pc.25076.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dira Amanda, Tetty Kemala, Jaka Rachmadetin, Sulistioso Giat Sukaryo, Adi Cifriadi, Mohammad Khotib, Kuat Heriyanto, Achmad Ramadhani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

