STUDI PENGARUH PENAMBAHAN YTTRIUM DAN PERLAKUAN PANAS BETA TERHADAP KETAHANAN HIDROGEN PADUAN ZIRCALOY-4-0,1%Mo PADA TEMPERATUR 600°C DAN 800°C
DOI:
https://doi.org/10.17146/urania.2022.28.2.6643Keywords:
Zircaloy-4, hydrogen resistance, yttrium variationAbstract
Electrical energy is a source of energy that is widely used and needed by humans. So that the need for electrical energy will increase along with the increase in the human population. Nuclear Power Plant is one solution to this problem. One of the important components of nuclear reactors, namely nuclear fuel cladding, usually uses a material in the form of a zirconium alloy, but the use of this alloy for a long time will be susceptible to embrittlement due to hydrogen penetration. A series of experiments were conducted to determine the effect of adding yttrium and beta heat treatment on hydrogen resistance and mechanical properties of Zircaloy-4-0.1%Mo-xY alloy (x=0 wt%; 0.5 wt%; 1 wt%). The addition of yttrium causes an increase in the amount of precipitate which is thought to be α-Y while increasing the alloy hardness in both as cast alloys and beta heat treatment. Beta heat treatment decreased the alloy hardness due to an increase in the number of β-Zr phases. Hydrogen resistance can be increased by adding yttrium because it acts as a β-Zr phase stabilizer. Similarly, beta heat treatment can increase hydrogen resistance with the same method, namely increasing the number of β-Zr phases so that the amount of soluble hydrogen increases. The addition of 1 wt% Y to zircaloy-4-0.1%Mo alloy with beta heat treatment showed the best hydrogen resistance with a thickness of 6.24 μm at 600°C and 545.5 μm at 800°C.
References
. I. F. Timorria, "Populasi Penduduk Meningkat Tajam, Ketahanan Pangan Perlu Diperkuat," Bisnis.com, 2019. https://ekonomi.bisnis.com/read/20191105/99/1167133/populasi-penduduk-meningkat-tajam-ketahanan-pangan-perlu-diperkuat. diakses 22 Mei 2021
. C. R. F. Azevedo, "Selection of fuel cladding material for nuclear fission reactors," Eng. Fail. Anal., vol. 18, no. 8, pp. 1943-1962, Dec. 2011, doi: 10.1016/J.ENGFAILANAL.2011.06.010
https://doi.org/10.1016/j.engfailanal.2011.06.010
. A. P. Prasetyono, "PLTN: Solusi Bauran Energi Bersih Non Intermittent," Dewan Energi Nasional, 2021. https://www.den.go.id/index.php/dinamispage/index/1011-pltn-solusi-bauran-energi-bersih-non-intermittent.html. diakses 23 Mei 2021
. D. H. Prajitno, "Kinetika Oksidasi Paduan Terner Zr-2.5%Nb-Y dan Ketahanan Lapisan Oksida terhadap Penetrasi Hidrogen pada Suhu Tinggi," Bandung, 2013.
. G. Jiang, D. Xu, P. Feng, S. Guo, J. Yang, and Y. Li, "Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors," J. Alloys Compd., vol. 869, p. 159235, Jul. 2021, doi: 10.1016/J.JALLCOM.2021.159235.
https://doi.org/10.1016/j.jallcom.2021.159235
. P. Immanuel, P. Ambardi, and D. H. Prajitno, "Ketahanan Oksidasi Zirkaloy-4 yang Dipadu dengan Yttrium Pada Suhu Tinggi," Urania J. Ilm. Daur Bahan Bakar Nukl., vol. 25, no. 1, 2019.
https://doi.org/10.17146/urania.2019.25.1.4663
. D. H. Prajitno, S. Soepriyanto, and E. A. Basuki, "Sintesis dan Karakterisasi Paduan Zr-Nb-Y," 2010.
. D. R. Lide, CRC handbook of chemistry and physics, vol. 85. CRC press, 2004.
. C. Lemaignan, "Zirconium alloys: properties and characteristics," Compr. Nucl. Mater., pp. 217-232, 2012.
https://doi.org/10.1016/B978-0-08-056033-5.00015-X
. G. S. Brady, H. H. Clauser, and J. A. Vaccari, Materials handbook: an encyclopedia for managers, technical professionals, purchasing and production managers, technicians, and supervisors. McGraw-Hill Education, 2002.
. G. Lotha, E. Rodriguez, Y. Chauhan, P. Jain, and E. Gregersen, "Zirconium," Britannica, 2019.https://www.britannica. com/ science/zirconium.
. BATAN, "Pengenalan Pembangkit Listrik Tenaga Nuklir," 2015. http://www.batan.go.id/index.php/id/infonuklir/pltn-infonuklir/generasi-pltn/924-pengenalan-pembangkit-listrik-tenaga-nuklir (accessed Jun. 13, 2021).
. D. Féron, "Overview of nuclear materials and nuclear corrosion science and engineering," in Nuclear Corrosion Science and Engineering, Elsevier, 2012, pp. 31-56.
https://doi.org/10.1533/9780857095343.1.31
. S. J. Zinkle and J. T. Busby, "Structural materials for fission & fusion energy," Mater. Today, vol. 12, no. 11, pp. 12-19, 2009, doi: https://doi.org/10.1016/ S1369-7021(09)70294-9.
https://doi.org/10.1016/S1369-7021(09)70294-9
. S. Suman, "Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations," Nucl. Eng. Technol., vol. 53, no. 2, pp. 474-483, 2021, doi: https://doi.org/10.1016/ j.net.2020.07.017.
https://doi.org/10.1016/j.net.2020.07.017
. S.-S. Kim, J.-H. Koh, J.-W. Lee, and G.-I. Park, "Application of Welding Technology for a Zirconium Alloy of Nuclear Fuel Cladding," J. Korean Weld. Join. Soc., vol. 29, Feb. 2011, doi: 10.5781/KWJS.2011.29.1.005.
https://doi.org/10.5781/KWJS.2011.29.1.005
. G. Jiang, D. Xu, P. Feng, S. Guo, J. Yang, and Y. Li, "Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors," J. Alloys Compd., p. 159235, 2021.
https://doi.org/10.1016/j.jallcom.2021.159235
. AZO, "Zircaloy-4(Alloy Zr4) (UNS R60804)," 2013. https://www.azom.com/article.aspx?ArticleID=7644.
. R. Adamson, F. Garzarolli, B. Cox, A. Strasser, and P. Rudling, "Corrosion mechanisms in zirconium alloys," ZIRAT12 Spec. Top. Rep., 2007.
. A. Motta and L.-Q. Chen, "Hydride formation in zirconium alloys," JOM, vol. 64, Dec. 2012, doi: 10.1007/s11837-012-0479-x.
https://doi.org/10.1007/s11837-012-0479-x
. M. Große, M. Steinbrück, E. Lehmann, and P. Vontobel, "Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation," Oxid. Met., vol. 70, pp. 149-162, Oct. 2008, doi: 10.1007/s11085-008-9113-2.
https://doi.org/10.1007/s11085-008-9113-2
. J. Ni, Y. Zhao, L. Wang, Z. Zhang, and J. Xie, "Microstructure of Zircaloy-4 alloy during β phase quenching and determination of critical quenching diameter of its rods," Nucl. Mater. Energy, vol. 17, pp. 158-163, Dec. 2018, doi: 10.1016/J.NME.2018.10.014.
https://doi.org/10.1016/j.nme.2018.10.014
. R. A. Holt, "The beta to alpha phase transformation in Zircaloy-4," J. Nucl. Mater., vol. 35, no. 3, pp. 322-334, 1970.
https://doi.org/10.1016/0022-3115(70)90216-3
. E. Garlea et al., "Intergranular Strain Evolution in a Zircaloy-4 Alloy with Basketweave Morphology," Metall. Mater. Trans. A, vol. 41, pp. 1255-1260, May 2010, doi: 10.1007/s11661-010-0182-x.
https://doi.org/10.1007/s11661-010-0182-x
. HIMIKATUS, "Phase diagram of the Y-Zr system," HIMIKATUS.RU. http://www.himikatus.ru/art/phase-diagr1/Y-Zr.php.
. Y. Oshida, "2 - Materials Classification," Y. B. T.-B. and B. of T. M. (Second E. Oshida, Ed. Oxford: Elsevier, 2013, pp. 9-34.
https://doi.org/10.1016/B978-0-444-62625-7.00002-9
. J.-Q. Peng, Y. Chen, G.-Q. Yan, M. Wu, L.-J. Wang, and J.-S. Li, "Solid solubility extension and microstructure evolution of cast zirconium yttrium alloy," Rare Met., vol. 35, no. 4, pp. 325-330, 2016
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.