EFFECT OF Al, Zr AND Mo ON CORROSION RESISTANCE OF AlXCrFeNiMo AND AlXCrFeNiZr (X=1, 1.2 AND 1.4) AS FUEL CLADDING MATERIALS
DOI:
https://doi.org/10.17146/urania.2022.28.1.6624Keywords:
Fuel cladding, high entropy alloy, corrosionAbstract
The high entropy alloy of AlxCrFeNiM (with x = 1, 1,2 and 1,4; M = Mo and Zr) was successfully synthesized using powder metallurgy technique with sintering process at 1000 oC in an inert atmosphere. These alloys were designated as fuel cladding for research reactor with high U-density fuel such as U-Mo. One of the critical in-service properties of nuclear fuel cladding is its corrosion behavior. In this study, some properties of the HEA of AlxCrFeNiM such as the phases, microstructures, hardness, and corrosion resistance in 3 wt.% NaCl solution at room temperature were investigated. The results show that the phases in the HEA of AlxCrFeNiMo are FeNi, AlNi and Mo. The HEA of AlxCrFeNiZr has more complex phases compared to the AlxCrFeNiMo. The microstructure of HEA samples show fine grains with some micropores that imperfect the solidification during the sintering process. The hardness value of the HEA of AlxCrFeNiMo has a trend of decreasing as the x value increases. The opposite trend occurs to the HEA of AlxCrFeNiZr that the hardness value increases with increasing x value. The lowest hardness value is Al1.4CrFeNiMo at 262.2 HV, and the highest hardness value of Al1.4CrFeNiZr is at 756.7 HV. The corrosion rate of the AlxCrFeNiMo does not show a specific trend with increasing x value; however, the AlxCrFeNiZr shows decreasing value with increasing x value. The lowest value for the all-HEA samples is 0.20 mmpy for the Al1.4CrFeNiZr. The results of hardness and corrosion tests show that the Zr element combined with the Al element affects not only its hardness but also its corrosion resistance.
References
. I. Husnayani, M. B. Setiawan, P. M. Udiyani, and S. Kuntjoro, "Evaluation of nuclear heating in sample materials irradiated in RSG-GAS core," AIP Conference Proceedings. vol. 2180, 2019. doi: 10.1063/1.5135520.
https://doi.org/10.1063/1.5135520
. M. H. Tsai, and J. W. Yeh, "High-entropy alloys: A critical review. Mater. Res. Lett., vol. 2, no. 3, pp. 107-123, 2014. doi: 10.1080/21663831.2014.912690.
https://doi.org/10.1080/21663831.2014.912690
. N. Jaksic, V. Radu, and F. K. Nilsson, "Nuclear fuel cladding review of the zircaloy cladding and basic analysis of the model with the single hydride," Directorate General Joint Research Centre, Institute for Energy, 2008.
. D. B. Miracle, J.D. Miller, O. N. Senkov, C. Woodward, M . D. Uchic, and J. Tiley, "Exploration and development of high entropy alloys for structural applications," Entropy, vol. 16, no. 1, pp. 494-525, 2014. doi: 10.3390/e16010494.
https://doi.org/10.3390/e16010494
. E. J. Pickering, A.W. Carruthers, P. J. Barron, S. C. Middleburgh, D. E. J. Armstrong, and A. S. Gandy, "High-entropy alloys for advanced nuclear applications," Entropy, vol. 23, no. 1, pp. 1-28, 2021. doi: 10.3390/e23010098.
https://doi.org/10.3390/e23010098
. Y. Shi, B. Yang, and P. K. Liaw, "Corrosion-resistant high-entropy alloys: A review," Metals (Basel)., vol. 7, no. 2, pp. 1-18, 2017. doi: 10.3390/met7020043.
https://doi.org/10.3390/met7020043
. X. Wang, W. Guo, and Y. Fu, "High-entropy alloys: Emerging materials for advanced functional applications," J. Mater. Chem. A., vol. 9. no. 2. pp. 663-701, 2021. doi: 10.1039/d0ta09601f.
https://doi.org/10.1039/D0TA09601F
. J. Setiawan, S. Pribadi, A. Jamaludin, Sungkono and M. H. Al-Hasa, "Structural analysis of Al alloys for nuclear fuel cladding," AIP Conference Proceedings. vol. 2262, 2020. doi: 10.1063/5.0015710.
https://doi.org/10.1063/5.0015710
. D. M. Rodríguez, F. Plazaola, J. S. Garitaonandia, J. A. Jiménez, and E. Apiñaniz, "Influence of volume and Fe local environment on magnetic properties of Fe-rich Fe-Al alloys. Intermetallics, vol. 24, pp. 38-49, 2012. https://doi.org/10.1016/j.intermet.2012.0 1.021
https://doi.org/10.1016/j.intermet.2012.01.021
. Masruroh, A. B. Manggara, T. Lapailaka, dan R. Triandi, "Penentuan ukuran kristal (crystallite size) lapisan tipis pzt dengan metode XRD melalui pendekatan persamaan debye scherrer, "Erudio Journal of Educational Innovation, vol. 1, no.2, hal. 24-29, 2013. https://doi.org/10.18551/erudio.1-2.4
https://doi.org/10.18551/erudio.1-2.4
. O. A. Cortez, F. J. Moura, E. A. Brocchi, R. C. S. Navarro and R. M. S. Fernandes, "Fe-Ni Alloy Synthesis Based on Nitrates Thermal Decomposition Followed by H2 Reduction," Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 45, no. 6, pp. 2033-2039, 2014. doi: 10.1007/s11663-014-0221-x.
https://doi.org/10.1007/s11663-014-0221-x
. T. Davey, N. D. Tran, A. Saengdeejing, and Y. Chen, "First-principles-only CALPHAD phase diagram of the solid aluminium-nickel (Al-Ni) system," Calphad: Computer coupling of phase diagrams thermochemistry, vol. 71, p. 102008, 2020. doi: 10.1016/j.calphad. 2020.102008.
https://doi.org/10.1016/j.calphad.2020.102008
. B. Grushko, W. Kowalski, D. Pavlyuchkov, B. Przepiórzyński, and M. Surowiec "A contribution to the Al-Ni-Cr phase diagram," J. Alloys Compd., vol. 460, no. 1-2, pp. 299-304, 2008. doi:10.1016/j.jallcom.2007.06.044.
https://doi.org/10.1016/j.jallcom.2007.06.044
. D. M. Kondrat'ev, K. B. Kalmykov, N. E. Dmitrieva, and S. F. Dunaev, "Phase equilibria in Al-Ni-Zr system at 1123 K," Moscow Univ. Chem. Bull., vol. 67, no. 6, pp. 259-264, 2012. doi: 10.3103/S0027131412060053.
https://doi.org/10.3103/S0027131412060053
. Y. J. An, L. Zhu, S. Jin, J. Lu, and X. Liu, "Laser-ignited self-propagating sintering of AlCrFeNiSi high-entropy alloys: An improved technique for preparing high- entropy alloy," Metals, vol. 9, no. 4, pp. 1-9, 2019. doi:10.3390/met9040438.
https://doi.org/10.3390/met9040438
. E. Nugroho, "Pengaruh unsur aluminium dalam kuningan terhadap kekerasan, kekuatan tarik, dan struktur mikro," Turbo: Jurnal Program Studi Teknik Mesin, vol. 1, no. 10, pp. 10-15, 2012. doi: 1. 10.24127/trb.v1i1.82
https://doi.org/10.24127/trb.v1i1.82
. K. R. Sriraman, S. G. S. Raman, and S. K. Seshadri, "Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni-W alloys," Materials Letter. vol. 61, no. 3, pp. 715-718, 2007. doi: 10.1016/j.matlet.2006.05.049.
https://doi.org/10.1016/j.matlet.2006.05.049
. Y. Wang, and G. Cacciamani, "Thermodynamic modeling of the Al-Cr- Ni system over the entire composition and temperature range," Journal of Alloys and Compounds, vol. 688, pp. 422-435, 2016. https://doi.org/10.1016/j. jallcom.2016. 07.130
https://doi.org/10.1016/j.jallcom.2016.07.130
. Y. Shi, B. Yang, X. Xie, J. Brechtl, K. A. Dahmen, and P. K. Liaw, "Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior," Corrosion Science. vol. 119, pp. 33-45, 2017. doi: 10.1016/j.corsci.2017.02.019.
https://doi.org/10.1016/j.corsci.2017.02.019
. M. K. Ajiriyanto, D. Anggraini, and R. Kriswarini, "Analisis korosi paduan ZIRLO-Mo dalam media NaCl menggunakan metode polarisasi," Urania J. Ilm. Daur Bahan Bakar Nukl., vol. 23, no. 3, pp. 183-194, 2017. doi: 10.17146/urania.2017.23.3.3221.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.