EFEK NITROCARBURIZING PADA MATERIAL LOW CARBON STEEL TERHADAP KETAHANAN KOROSI DAN KEKERASAN
DOI:
https://doi.org/10.17146/urania.2022.28.1.6596Keywords:
Nitrocarburizing, corrosion, hardness, low carbon steelAbstract
The use of steel is currently experiencing a fairly rapid growth. Low carbon steel is widely used in radiometallurgical installation, especially for structural components of conveyors, chains, gears and so on. Its use is increasingly massive so that various kinds of developments in steel materials have been carried out. One of them is to improve the quality of steel, so it can be used for a long time. One method that can be used to improve the quality of steel is nitrocarburizing process. This research focused on the effect of the nitrocarburizing process on corrosion rate. The nitrocarburizing process was carried out on several samples with different temperatures but the same gas. Increasing the temperature in the nitrocarburizing process resulted in harder specimen surface. The increase in hardness was obtained based on the temperature difference which increased from 192 HV for the sample before dinitrocarburizing to 793 HV for the 450 ºC nitrocaburizing sample. In addition, corrosion resistance increases with increasing nitrocarburizing temperature. The nitrocarburizing process causes the diffusion of C and N atoms to form a compound layer, diffusion layer, and transition layer consisting of a layer of ε-Fe2-3N, γ’- Fe4N, Fe2(N, C)1-z, making the surface layer of the material become hard and resistant to corrosion.
References
OECD Steel Commitee Meeting, "Steel Demand Outlook 2021- 2022," Brussels, 2021.
S. Illescas, J. Fernández, J. Asensio, M. Sánchez-Soto, and J. M. Guilemany, "Study of the mechanical properties of low carbon content HSLA steels," Rev. Metal., vol. 45, no. 6, pp. 424-431, 2009, doi: 10.3989/revmetalm.0902.
https://doi.org/10.3989/revmetalm.0902
P. Podany and M. Balcar, "Properties of low carbon steel with various microalloying additions after particular thermomechanical processing," Mater. Sci. Technol. Conf. Exhib. 2011, MS T'11, vol. 1, pp. 735-742, 2011.
W. Chen et al., "The thermal process for hardening the nitrocarburized layers of a low-carbon steel," Scr. Mater., vol. 210, p. 114467, 2022, doi: 10.1016/j.scriptamat.2021.114467.
https://doi.org/10.1016/j.scriptamat.2021.114467
M. A. J. Somers, "Nitriding and nitrocarburizing: Status and future challenges," Proc. Heat Treat. Surf. Eng. HTSE 2013, pp. 69-84, 2013.
G. Chen, J. Wang, H. Fan, D. Wang, X. Li, and H. Dong, "Combat molten aluminum corrosion of AISI H13 steel by low-temperature liquid nitrocarburizing," J. Alloys Compd., vol. 776, pp. 702-711, 2019, doi: 10.1016/j.jallcom.2018.10.298.
https://doi.org/10.1016/j.jallcom.2018.10.298
H. Zhao, L. Duan, G. Chen, H. Fan, J. Wang, and C. Zhou, "High corrosion resistance performance of 304 stainless steel after liquid nitrocarburization," Compos. Part B Eng., vol. 155, pp. 173-177, 2018, doi: 10.1016/j.compositesb.2018.07.062.
https://doi.org/10.1016/j.compositesb.2018.07.062
P. Cisquini, S. V. Ramos, P. R. P. Viana, V. D. F. C. Lins, A. R. Franco, and E. A. Vieira, "Effect of the roughness produced by plasma nitrocarburizing on corrosion resistance of AISI 304 austenitic stainless steel," J. Mater. Res. Technol., vol. 8, no. 2, pp. 1897-1906, 2019, doi: 10.1016/j.jmrt.2019.01.006.
https://doi.org/10.1016/j.jmrt.2019.01.006
J. Alphonsa, V. S. Raja, and S. Mukherjee, "Study of plasma nitriding and nitrocarburizing for higher corrosion resistance and hardness of 2205 duplex stainless steel," Corros. Sci., vol. 100, pp. 121-132, 2015, doi: 10.1016/j.corsci.2015.07.014.
https://doi.org/10.1016/j.corsci.2015.07.014
E. Boztepe, A. C. Alves, E. Ariza, L. A. Rocha, N. Cansever, and F. Toptan, "A comparative investigation of the corrosion and tribocorrosion behaviour of nitrocarburized, gas nitrided, fluidized-bed nitrided, and plasma nitrided plastic mould steel," Surf. Coatings Technol., vol. 334, pp. 116-123, 2018, doi: 10.1016/j.surfcoat.2017.11.033.
https://doi.org/10.1016/j.surfcoat.2017.11.033
S. Sriyono et al., "the Debris particles analysis of RSG-GAS coolant to anticipate sediment induced corrosion," J. Pengemb. Energi Nukl., vol. 18, no. 1, p. 11, 2016, doi: 10.17146/jpen.2016.18.1.2675.
https://doi.org/10.17146/jpen.2016.18.1.2675
S. Chotijah, "Studi surface hardening pada bahan roda gigi buatan Indonesia dengan menggunakan DC-plasma nitrocarburizing," Risal. Fis., vol. 1, no. 2, pp. 53-58, 2017, doi: 10.35895/rf.v1i2.72.
https://doi.org/10.35895/rf.v1i2.72
E. Hermawan, U. Sudjadi, and M. K. Ajiriyanto, "Effect of nitrocarburizing and argon admixing on low carbon steel for component facility in radiometallurgical installation," vol. 31, no. 4, pp. 1-7, 2021, doi: 10.14456/jmmm.2021.xx.
G. Liu, J. Liu, J. Zhang, M. Zhang, and Y. Feng, "Microstructure evolution and mechanical properties of medium carbon martensitic steel during warm rolling and annealing process," Materials (Basel)., vol. 14, no. 22, 2021, doi: 10.3390/ma14226900.
https://doi.org/10.3390/ma14226900
A. H. Kandil, A. A. F. Waheed, and H. M. T. Tawfik, "Water chemistry effect on corrosion of nuclear fuel cladding material zircaloy-4 (Zr-4)," Int J Adv Res, vol. 2, no. 4, pp. 149-162, 2014.
M. Naeem et al., "The effect of argon admixing on nitriding of plain carbon steel in N2 and N2-H2 plasma," Surf. Coatings Technol., vol. 350, pp. 48-56, 2018, doi: 10.1016/j.surfcoat.2018.07.004.
https://doi.org/10.1016/j.surfcoat.2018.07.004
P. G. Reyes, C. Torres, and H. Martínez, "Electron temperature and ion density measurements in a glow discharge of an Ar-N2 mixture," Radiat. Eff. Defects Solids, vol. 169, no. 4, pp. 285-292, 2014, doi: 10.1080/10420150.2013.860975.
https://doi.org/10.1080/10420150.2013.860975
T. Borowski, "Enhancing the corrosion resistance of austenitic steel using active screen plasma nitriding and nitrocarburising," Materials (Basel)., vol. 14, no. 12, 2021, doi: 10.3390/ma14123320.
https://doi.org/10.3390/ma14123320
S. Y. Lu, K. F. Yao, Y. B. Chen, M. H. Wang, Y. Shao, and X. Y. Ge, "Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel," J. Appl. Electrochem., vol. 45, no. 4, pp. 375-383, 2015, doi: 10.1007/s10800-015-0796-1.
https://doi.org/10.1007/s10800-015-0796-1
S. S. Deshpande, P. P. Deshpande, and M. J. Rathod, "Effect of gas nitrocarburizing post oxidation on electrochemical behaviour of AISI 4140 steel in neutral medium," Mater. Today Proc., 2021, doi: 10.1016/j.matpr.2021.09.332.
https://doi.org/10.1016/j.matpr.2021.09.332
A. S. Azar, A. Lekatou, M. F. Sunding, J. S. Graff, N. Tzima, and S. Diplas, "Corrosion performance and degradation mechanism of a bi-metallic aluminum structure processed by wire-arc additive manufacturing," npj Mater. Degrad., vol. 5, no. 1, pp. 1-15, 2021, doi: 10.1038/s41529-021-00175-4.
https://doi.org/10.1038/s41529-021-00175-4
K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, and U. Ikhlaq, "Influence of argon gas concentration in N2-Ar plasma for the nitridation of Si in abnormal glow discharge," Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2016.
L. Jiang, H. Luo, and C. Zhao, "Nitrocarburising of AISI 316 stainless steel at low temperature," Surf. Eng., vol. 34, no. 3, pp. 205-210, 2018, doi: 10.1080/02670844.2016.1253268.
https://doi.org/10.1080/02670844.2016.1253268
M. H. Yusoff et al., "An Electrochemical evaluation of synthesized coumarin-azo dyes as potential corrosion inhibitors for mild steel in 1M HCl medium," Int. J. Electrochem. Sci., vol. 15, pp. 11742-11756, 2020, doi: 10.20964/2020.12.43.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.