MUTATION DETECTION OF MULTIDRUG-RESISTANT TUBERCULOSIS BY RT-PCR METHOD AS THE DIAGNOSTIC TOOL OF MDR-TB
Main Article Content
Abstract
Eight percent of tuberculosis (TB) cases worldwide are resistant to rifampicin, with mutations occurring in the rpoB and katG genes. It is necessary to develop a specific multidrug-resistant (MDR) diagnostic technique using the RT-PCR method in Indonesia to aid in rapid and accurate diagnosis. In-silico testing using SnapGene software resulted in the design of DNA primers for the katG and rpoB genes, plasmids, and specific probes. This study employed a cross-sectional design using 30 non-MDR-TB and MDR-TB samples from RSUD Sitanala, Tangerang Banten, which were tested for amplification of the katG and rpoB genes using Sybr green RT-PCR. Validity testing was conducted using specific probes for the katG and rpoB genes. The amplification results showed that MDR-TB samples and MDR-TB plasmids required a longer time compared to non-MDR-TB samples and non-MDR-TB plasmids. The Quantification Cycle (Cq) value in non-MDR-TB samples was lower than the Cq value in MDR-TB samples. A t-test revealed a significant difference in Cq values of the rpoB and katG genes between MDR-TB and non-MDR-TB patients (p-value < 0.005). These differences in Cq values indicate that the findings of this study can serve as an initial reference for the development of an RT-PCR-based diagnostic kit for MDR-TB.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Aoki K, Nagasawa T, Ishii Y, Yagi S, Kashiwagi K, Miyazaki T, Tateda K (2021) Evaluation of clinical utility of novel coronavirus antigen detection reagent, Espline® SARS-CoV-2. J Infect Chemother 27:319–322. doi: 10.1016/j.jiac.2020.11.015
Artauli S, Widyaningtyas ST, Ibrahim F (2021) Construction of Recombinant Antigens Plasmid Expressing Spike and Nucleocapsid SARS-CoV-2 for Detection of the Antibodies Anti-SARS-Cov-2. Jurnal Biotek Medisiana Vol. 10. 2:87–96. doi:10.22435/mpk.v28i3.39
Berkhout B, Haasnoot J (2009) Nucleic acids-based therapeutics in the battle against pathogenic viruses. Handb Exp Pharmacol 189:243–263. doi: 10.1007/978-3-540-79086-0_9
Drame M, Tabue Teguo M, Proye E, Hequet F, Hentzien M, Kanagaratnam L, Godaert L (2020) Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J Med Virol 92:2312–2313. doi: 10.1002/jmv.25996
Ember K, Daoust F, Mahfoud M, Dallaire F, Ahmad EZ, Tran T, Plante A, Diop M-K, Nguyen T, St-Georges-Robillard A, Ksantini N, Lanthier J, Filiatrault A, Sheehy G, Beaudoin G, Quach C, Trudel D, Leblond F (2022) Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning. J Biomed Opt 27:1–24. doi: 10.1117/1.jbo.27.2.025002
Falzon D, Mirzayev F, Wares F, Baena IG, Zignol M, Linh N, Weyer K, Jaramillo E, Floyd K, Raviglione M (2015) Multidrug-resistant tuberculosis around the world: What progress has been made? Eur Respir J 45:150–160. doi: 10.1183/09031936.00101814
Gill CM, Dolan L, Piggott LM, McLaughlin AM (2022) New developments in tuberculosis diagnosis and treatment. Breathe 18:1–15. doi: 10.1183/20734735.0149-2021
Hewajuli DA, Dharmayanti N (2014) The Advance of Technology of Reverse Transcriptase-Polymerase Chain Reaction in Identifying the Genome of Avian Influenza and Newcastle Diseases. Indones Bull Anim Vet Sci 24:16–29. doi: 10.14334/wartazoa.v24i1.1022
Jang JG, Chung JH (2020) Diagnosis and treatment of multidrug-resistant tuberculosis. 37:277–285. doi: 10.12701/yujm.2020.00626
Decree of the Ministry of Health of the Republic of Indonesia concerning National Guidelines for Medical Services for the Management of Tuberculosis. (2019). NOMOR HK.01.07/MENKES/755/2019.
Lange C, Abubakar I, Alffenaar JWC, Bothamley G, Caminero JA, Carvalho ACC, Chang KC, Codecasa L, Correia A, Crudu V, Davies P, Dedicoat M, Drobniewski F, Duarte R, Ehlers C, Erkens C, Goletti D, Günther G, Ibraim E, Kampmann B, Kuksa L, De Lange W, Van Leth F, Van Lunzen J, Matteelli A, Menzies D, Monedero I, Richter E, Rüsch-Gerdes S, Sandgren A, Scardigli A, Skrahina A, Tortoli E, Volchenkov G, Wagner D, Van Der Werf MJ, Williams B, Yew WW, Zellweger JP, Cirillo DM (2014) Management of patients with multidrugresistant/ extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement. Eur Respir J 44:23–63. doi: 10.1183/09031936.00188313
Lestari BW, McAllister S, Hadisoemarto PF, Afifah N, Jani ID, Murray M, van Crevel R, Hill PC, Alisjahbana B (2020) Patient pathways and delays to diagnosis and treatment of tuberculosis in an urban setting in Indonesia. Lancet Reg Heal - West Pacific 5:100059. doi: 10.1016/j.lanwpc.2020.100059
Maladan Y, Krismawati H, Oktavian A, Lestari CSW (2020) Improving Multidrug-Resistance Tuberculosis Papua's Management Using Whole Genome Sequencing. 22:1–7. doi: 10.2991/ahsr.k.200215.001
Maladan Y, Krismawati H, Wahyuni T, Tanjung R, Awaludin K, Audah KA, Parikesit AA (2021a) The whole-genome sequencing in predicting Mycobacterium tuberculosis drug susceptibility and resistance in Papua, Indonesia. BMC Genomics 22:1–11. doi: 10.1186/s12864-021-08139-3
Maladan Y, Wahyuni T, Krismawati H (2021b) Single Nucleotide Polymorphism in the rpoB Mycobacterium tuberculosis gene from Papua-Indonesia and Its Impact on Rifampicin Resistance: A Whole-Genome Sequencing Analysis. Microbiol Indones 15:37–44. doi: 10.5454/mi.15.2.1
Moure R, Muñoz L, Torres M, Santin M, Martín R, Alcaide F (2011) Rapid detection of Mycobacterium tuberculosis complex and rifampin resistance in smear-negative clinical samples by use of an integrated real-time PCR method. J Clin Microbiol 49:1137–1139. doi: 10.1128/JCM.01831-10
Narasimooloo R, Ross A (2012) Delay in commencing treatment for MDR TB at a specialised TB treatment center in KwaZulu-Natal. S Afr Med J 102:360–362. doi: 10.7196/samj.5361
Nguyen TNA, Berre VA Le, Bañuls AL, Nguyen TVA (2019) Molecular diagnosis of drug-resistant tuberculosis; A literature review. Front Microbiol 10:1–12. doi: 10.3389/fmicb.2019.00794
Pandey P, Pant ND, Rijal KR, Shrestha B, Kattel S, Banjara MR, Maharjan B, Rajendra KC (2017) Diagnostic Accuracy of GeneXpert MTB/RIF assay in comparison to conventional drug susceptibility testing method for the diagnosis of multidrug-resistant tuberculosis. PLoS One 12:8–13. doi: 10.1371/journal.pone.0169798
Rao P, Chawla K, Shenoy VP, Mukhopadhyay C (2016) Role of real-time PCR for detection of tuberculosis and drug resistance directly from clinical samples. Indian J Tuberc 63:149–153. doi: 10.1016/j.ijtb.2016.08.002
Reichmuth ML, Hömke R, Zürcher K, Sander P, Avihingsanon A, Collantes J (2020) cross Natural Polymorphisms in Mycobacterium tuberculosis. 1–5 doi: 10.1128/AAC.00513-20
Reviono, Kusnanto P, Eko V, Pakiding H, Nurwidiasih D (2014) Multidrug Resistant Tuberculosis (MDR-TB): Epidemiological Review and Risk Factors for Side Effects of Anti-Tuberculosis Drugs. Maj Kedokt Bandung 46:189–196. doi: 10.15395/mkb.v46n4.336
Ruesen CJ (2019) Understanding tuberculosis drug resistance, disease phenotype and transmission by mycobacterial genome analysis. Ipskamp Printing, Enschede. ISBN
-94-028-1715-7.
Susanty E, Amir Z, Siagian P, Yunita R, Eyanoer PC (2016). Genexpert Mtb/Rif Diagnostic Test at the Adam Malik Haji Center General Hospital in Medan. J Biosains 1:19. doi: 10.24114/jbio.v1i2.2783
Tahamtan A, Ardebili A (2020) Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn 20:453–454. doi: 10.1080/14737159.2020.1757437
Tania T, Sudarmono P, Kusumawati RL, Rukmana A, Pratama WA, Regmi SM, Kaewprasert O, Chaiprasert A, Chongsuvivatwong V, Faksri K (2020) Whole-genome sequencing analysis of multidrug-resistant Mycobacterium tuberculosis from Java, Indonesia. J Med Microbiol 69:1013–1019. doi: 10.1099/JMM.0.001221
Terranova L, Oriano M, Teri A, Ruggiero L, Tafuro C, Marchisio P, Gramegna A, Contarini M, Franceschi E, Sottotetti S, Cariani L, Bevivino A, Chalmers JD, Aliberti S, Blasi F (2018) How to process sputum samples and extract bacterial DNA for microbiota analysis. Int J Mol Sci 19:1–12. doi: 10.3390/ijms19103256
Yilmaz H, Toy HI, Marquardt S, Karakülah G, Küçük C, Kontou PI, Logotheti S, Pavlopoulou A (2021) In silico methods for the identification of diagnostic and favorable prognostic markers in acute myeloid leukemia. Int J Mol Sci 22. doi: 10.3390/ijms22179601
Yuliwulandari R, Prayuni K, Razari I, Susilowati RW, Zulhamidah Y, Soedarsono S, Sofro ASM, Tokunaga K (2021) Genetic characterization of N-acetyltransferase 2 variants in acquired multidrug-resistant tuberculosis in Indonesia. Pharmacogenomics 22:157–163. doi: 10.2217/pgs-2020-0163