OPTIMIZATION OF Bacillus paramycoides FERMENTATION MEDIUM TO INCREASE THE PRODUCTION OF 5-AMINOLEVULINIC ACID IN A 10 LITER FERMENTER
Main Article Content
Abstract
5-Aminolevulinic acid is an essential precursor for the biosynthesis of tetrapyrrole compounds, such as chlorophyll and heme. 5-ALA has the potential to be used as a plant growth and antioxidant activity enhancer. 5-ALA can be produced through fermentation by Bacillus paramycoides. This study aimed to optimize B. paramycoides fermentation medium to increase 5-ALA production. The optimization was carried out using response surface method (RSM) experimental design. 5-ALA production in a 10 L fermenter was conducted using an optimized medium and supplemented with MSG as a precursor and wood vinegar as an inhibitor. The results showed that the best medium composition was 27.78 g L-1 molasses; 9.145 g L-1 urea; 8.838 g L-1 NaCl; and 32.07 g L-1 glucose, resulting in 10.749 (log CFU mL-1) and 255.30 µM 5-ALA. 5-ALA production trial in a 10 L fermenter produced 581.82 µM 5-ALA. Medium optimization and precursor-inhibitors addition in the fermentation increased the 5-ALA yield 3.2 times compared to before optimization.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Abou-Taleb KA, Galal GF (2018) A comparative study between one-factor-at-a-time and minimum runs resolution-IV methods for enhancing the production of polysaccharide by Stenotrophomonas daejeonensis and Pseudomonas geniculate. Ann Agric Sci 63:173–180. doi: 10.1016/j.aoas.2018.11.002
Aiguo Z, Meizhi Z (2019) Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli. World J Microbiol Biotechnol 35:175. doi: 10.1007/s11274-019-2750-6
Arnold A, Sajitz-Hermstein M, Nikoloski Z (2015) Effects of varying nitrogen sources on amino acid synthesis costs in Arabidopsis thaliana under different light and carbon-source conditions. PLoS ONE 10: e0116536. doi: 10.1371/journal.pone.0116536
Choorit W, Saikeur A, Chodok P, Prasertsan P, Kantachote D (2011) Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. J Biosci Bioeng 111:658–664. doi: 10.1016/j.jbiosc.2011.01.014
Dinarvand M, Rezaee M, Masomian M, Jazayeri SD, Zareian M, Abbasi S, Ariff AB (2013) Effect of C/N ratio and media optimization through response surface methodology on simultaneous productions of intra- and extracellular inulinase and invertase from Aspergillus niger ATCC 20611. BioMed Res Int 2013: 508968. doi: 10.1155/2013/508968
Farah F (2020) Improving crop growth by enhancing 5-aminolevulinic acid production by plant-growth-promoting bacteria. Thesis, University of Nottingham. http://eprints.nottingham.ac.uk/60091/
Helaly AA (2017) Enhancement growth, yield production and quality of kale plants by using plant growth promoting bacteria. 15:120–130. doi: 10.7537/marsnsj150317.17
Hendawy AO, Khattab MS, Sugimura S, Sato K (2020) Effects of 5-aminolevulinic acid as a supplement on animal performance, iron status, and immune response in farm animals: A review. Animals 10:1352. doi: 10.3390/ani10081352
Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. doi: 10.1080/17429145.2014.894587
Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J (2017) Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 33:200. doi: 10.1007/s11274-017-2366-7
Kang Z, Zang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of 5-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533-1542. doi:10.1016/j.biotechadv.2012.04.003
Lee DH, Jun WJ, Shin DH, Cho HY, Hong BS (2005) Effect of culture conditions on production of 5-aminolevulinic acid by recombinant Escherichia coli. Biosci Biotechnol Biochem 69:470–476. doi: 10.1271/bbb.69.470
Liu X, Zhu L, Song Q, Chang J, Ye J, Zhang W, Liao Y, Xu F (2018) Effects of 5-aminolevulinic acid on the photosynthesis, antioxidant system, and a-bisabol content of Matricaria recutita. Notulae Botanica Horti Agrobotanici Cluj-Napoca 46:418-425. doi: 10.15835/nbha46211072.
Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z (2017) Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 67:2499–2508. doi: 10.1099/ijsem.0.001821
Maraziha I (2020) Produksi asam 5-aminolevulinat menggunakan bakteri wildtype B10 dengan media molase. Skripsi, Institut Teknologi Indonesia
Mauzerall D, Granick S (1956) The occurrence and determination of A-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435-446 doi: 10.1016/s0021-9258(18)65809-0
Montgomery DC (2012) Design and Analysis of Experiments, 8th Edition. John Wiley & Sons, New York
Nishikawa S, Murooka Y (2001) 5-Aminolevulinic acid: Production by fermentation, and agricultural and biomedical applications. Biotechnol Genet Eng Rev 18:149–170. doi: 10.1080/02648725.2001.10648012
Nunkaew T, Kantachote D, Chaiprapat S, Nitoda T, Kanzaki H (2018) Use of wood vinegar to enhance 5-aminolevulinic acid production by selected Rhodopseudomonas palustris in rubber sheet wastewater for agricultural use. Saudi J Biol Sci 25:642–650. doi: 10.1016/j.sjbs.2016.01.028
Omotoyinbo OV, Omotoyinbo BI (2016) Effect of varying NaCl concentrations on the growth curve of Escherichia coli and Staphylococcus aureus. Cell Biol 4:31–34. doi: 10.11648/j.cb.20160405.11
Prabandari E, Hidayati DN, Dewi D, Islamiati ED, Syamsu K (2017) Peningkatan produksi sefalosporin C dari Acremonium chrysogenum CB2/11/1.10.6 dengan optimasi media menggunakan metode respon permukaan. J Bioteknol Biosains Indones 4:10-20. doi: 10.29122/ jbbi.v4i1.1808
Puspitasari R (2008) Kualitas molase sebagai bahan baku produksi alkohol pabrik spiritus madukismo Yogyakarta. Skripsi, Universitas Sanata Dharma Yogyakarta
Saikeur A, Choorit W, Prasertsan P, Kantachote D, Sasaki K (2009) Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Biosci Biotechnol Biochem 73:987–992. doi: 10.1271/bbb.80682
Siregar JH (2009) Pengaruh pemberian vitamin C terhadap jumlah sel Leydig dan jumlah sperma mencit jantan dewasa (Mus musculus, L.) yang dipapari monosodium glutamate (MSG). Tesis, Universitas Sumatera Utara
Stevens NT, Anderson-Cook CM (2019) Design and analysis of confirmation experiments. J Qual Technol 51:109–124. doi: 10.1080/00224065.2019.1571344
Sunaryanto R, Nurani D (2019) Optimasi permukaan respon medium fermentasi Streptomyces prasinopilosus sebagai antifungi terhadap patogen Ganoderma boninense. J Bioteknol Biosains Indones 6:164-173. doi: 10.29122/jbbi.v6i2.3231
Syafitri D, Sayuti I, Mahadi I (2022) Efektifitas rasio nutrien bakteri Bacillus cereus strain IMB-11 dalam mendegradasi pencemaran biosolar sebagai rancangan poster biologi SMA. Biogenesis 18:54-67. doi: 10.31258/biogenesis.18.1.54-67.
Tewari KM, Eggleston IM (2018) Chemical approaches for the enhancement of 5-aminolevulinic acid-based photodynamic therapy and photodiagnosis. Photochem Photobiol Sci 17:1553–1572. doi: 10.1039/C8PP00362A
Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agri For 38:327-333. doi: 10.3906/tar-1308-62
Wulan P, Gozan M, Arby B, Achmad D (2022) Penentuan rasio optimum C:N:P sebagai nutrisi pada proses biodegradasi benzena-toluena dan scale up kolom bioregenerator. Fakultas Teknik. Universitas Indonesia
Xu L, Islam F, Zhang W, Ghani MA, Ali B (2018) 5-Aminolevulinic acid alleviates herbicide-induced physiological and ultrastructural changes in Brassica napus. J Integr Agric 17:579–592. doi: 10.1016/S2095-3119(17)61676-9
Yang J, Zhu L, Fu W, Lin Y, Lin J, Cen P (2013) Improved 5-aminolevulinic acid production with recombinant Escherichia coli by a short-term dissolved oxygen shock in fed-batch fermentation. Chin J Chem Eng 21:1291–1295. doi: 10.1016/S1004-9541(13)60627-8
Yap PY, Trau D (2019) Direct E. coli cell count at OD600. Applicaton Note. Tip Biosystems Pte Ltd, Singapore
Yi W, Xu H, Tian D, Wu L, Zhang S, Wang L, Ji B, Zhu X, Okechi H, Liu G, Chen Q (2015) Photodynamic therapy mediated by 5-aminolevulinic acid suppresses gliomas growth by decreasing the microvessels. J Huazhong Univ Sci Technol [Med Sci] 35:259–264. doi: .1007/s11596-015-1421-6
Zhang J, Cui Z, Zhu Y, Zhu Z, Qi Q, Wang Q (2022) Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol Adv 55:107904. doi: 10.1016/j.biotechadv.2021.107904
Zhang J, Kang Z, Chen J, Du G (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep 5:8584. doi: 10.1038/srep08584