PRODUKSI LIPASE DARI ISOLAT KAPANG HASIL MUTASI UNTUK TRANSESTERIFIKASI
Main Article Content
Abstract
Lipase dimanfaatkan salah satunya dalam produksi biodiesel, yaitu dalam reaksi transesterifikasi. Kernel B (KB) merupakan kapang yang diisolasi dari limbah inti dan biji kelapa sawit, yang menghasilkan lipase sebagai katalis dalam reaksi transesterifikasi. Namun aktivitas transesterifikasi yang dihasilkan oleh lipase dari KB lebih rendah dibandingkan dengan lipase komersial AK Amano. Tujuan penelitian ini adalah mendapatkan mutan kapang dengan aktivitas transesterifikasi yang lebih tinggi dibandingkan tipe liarnya (KB). Proses mutasi dilakukan dengan menggunakan sinar ultraviolet (UV), ethyl methane sulfonate (EMS), dan N-methyl-N’-nitro-N-nitrosoguanidine (NMNG) terhadap kapang KB. Mutasi KB dengan menggunakan sinar UV menghasilkan 11 isolat, dimana isolat dengan kode m4.1KB1 menghasilkan aktivitas transesterifikasi yang lebih tinggi dibandingkan tipe liar, yaitu 0,172 U·mg-1. Mutan m5.7KB, yang dihasilkan dari mutan m4.1KB1 dengan perlakuan EMS, mengalami penurunan aktivitas transesterifikasi hingga hanya sebesar 0,051 U·mg-1. Mutan m6.0,3KB2 hasil perlakuan NMNG mengalami peningkatan aktivitas transesterifikasi sebesar 91,2% lebih tinggi dari KB.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Aziz R, Aisyah A, Ilyas A (2016) Sintesis metil ester dari minyak biji kemiri (Aleurites molluccana) menggunakan metode ultrasonokimia. Al-Kimia 4:21-30. doi: 10.24252/al-kimia.v4i1.1453
Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298-1315. doi: 10.1002/bit.22256
Goto N, Bazar G, Kovacs Z, Kunisada M, Morita H, Kizaki S, Sugiyama H, Tsenkova R, Nishigori C (2015) Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics. Scientific Reports 5:1-13. doi: 10.1038/srep11808
Ifadah RA, Kusnadi J, Wijayant SD (2016) Strain improvement Acetobacter xylinum menggunakan ethyl methane sulfonate (EMS) sebagai upaya peningkatan produksi selulosa bakteri. J Pangan Agroindustri 4:273-282
Iftikhar T, Niaz M, Abbas SQ, Zia MA, Ashraf I, Lee KJ, Haq IU (2010) Mutation induced enhanced biosynthesis of lipases by Rhizopus oligosporus var. microsporus. Pak J Bot 42:1235-1249. doi: 10.1590/S1517-838220100004000034
Indriawan A (2018) Pemanfaatan lipase untuk transesterifikasi ester asam lemak oleh isolat kapang limbah kernel dan nut kelapa sawit (Elaeis guineensis Jacq). Tesis, Universitas Indonesia
Karanam SK, Medicherla NR (2008) Enhanced lipase production by mutation induced Aspergillus japonicus. Afr J Biotechnol 7:2064-2067. doi: 10.5897/AJB2008.000-5054
Kotogan A, Nemeth B, Vagvolgyi C, Papp T, Tako M (2014) Screening for extracellular lipase enzymes with transesterification capacity in Mucoromycotina strains. Food Technol Biotechnol 52:73-82
Linfield WM, O'Brien DJ, Serota S, Barauskas RA (1984) Lipid-lipase interaction.I. Fat splitting with lipase from Candida rugosa. J Am Oil Chem Soc 61:1067-1071. doi: 10.1007/BF02636222
Loewe L, Hill WG (2010) The population genetics of mutations:good, bad and indifferent. Philos Trans R Soc Lond B Biol Sci 365:1153-1167. doi: 10.1098/rstb.2009.0317
Ohnishi J, Mizoguchi H, Takeno S, Ikeda M (2008) Characterization of mutations induced by N-methyl-N-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res 649:239-244. doi: 10.1016/j.mrgentox.2007.10.003
Ozturk B (2001) Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports. Dissertation, Ä°zmir Institute of Technology
Pratiwi D, Sebayang F, Jamilah l (2013) Produksi dan karakterisasi enzim lipase dari Pseudomonas aeruginosa dengan menggunakan induser minyak jagung serta kofaktor Na+ dan Co2+. J Saintia Kimia 1:1-6
Puspitaningati SR, Permatasari R, Gunardi I (2013) Pembuatan biodiesel dari minyak kelapa sawit dengan menggunakan katalis berpromotor ganda berpenyangga γ-Alumina (CaO/KI/g-Al2O3) dalam reaktor fluidized bed. J Teknik Pomits 2:193-197. doi: 10.12962/j23373539.v2i2.3573
Rahmah SZ (2012) Pembentukan senyawa dimer anetol dengan biokatalis enzim lakase dari jamur tiram putih. Skripsi, Universitas Airlangga
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 592980 (ID). doi: 10.4061/2010/592980
Shu QY, Foster BP, Nakagawa H (2012) Plant Mutation Breeding and Biotechnology. CABI, Oxfordshire, UK
Sreeju SN, Babu MM, Mariappan C, Selvamohan T (2011) Effect of physical and chemical mutagens on biopolmer producing strains and RAPD analysis of mutated strains. Arch Appl Sci Res 3:233-246
Suryanto A, Suprapto S, Mahfud M (2015) The production biofuels from coconut oil using microwave. Modern Applied Sci 9:93-98. doi: 10.5539/mas.v9n7p93
Susanti R, Fibriana F (2017) Teknologi Enzim. Penerbit Andi, Yogyakarta
Syafriana V, Nuswantara S, Mangunwardoyo W, Lisdiyanti P (2014) Enhancement of β-glucosidase activity in Penicillium sp. by random mutation with ultraviolet and ethyl methyl sulfonate. Ann Bogor 18:27-33. doi: 10.14203/ann.bogor.2014.v18.n2.27-33
Tagore PR, Narasu LM (2014) Isolation and development of a soil fungal strain with high lipolytic activity by mutation. Int J Pharma Chem Biol Sci 4:1-8
Tapia VE, Anschau A, Coradini AL, Franco TT, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2:64 doi: 10.1186/2191-0855-2-64
Thanh, LT, Okitsu K, Boi LV, Maeda Y (2012) Catalytic technologies for biodiesel fuel production and utilization of glycerol:A review. Catalysts 2:191-222. doi: 10.3390/catal2010191
Tran DT, Yeh KL, Chen CL, Chang JS (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119-127 doi: 10.1016/j.biortech.2011.12.145