ANTIDIABETIC ACTIVITY OF LEAF EXTRACT OF Clerodenrum fragrans Vent Willd IN Rattus novergicus INDUCED BY ALLOXAN

Main Article Content

Saronom Silaban

Abstract

Sarang banua plants are grown in Simalungun, North Sumatra, Indonesia, and have been used by the community as traditional medicinal plants. Sarang banua plant is a type of Clerodendrum fragrans Vent Willd, including the family Verbenaceae. This study aimed to determine the antidiabetic activity of the leaf extract of sarang banua (C. fragrans Vent Willd) in white male rats (Rattus novergicus) induced by alloxan. This study used a RAL design with seven treatments, namely (K0) standard feed, (K1) Na-CMC 0.5%), (K2) metformin, (K3) ethanol extract 100 mg/kg bw, 200 mg/kg bw (K4), 300 mg/kg bw (5), (K6) ethyl acetate extract 200 mg/kg bw and 300 mg/kg bw (K7). Groups K1 to K7 were induced by alloxan before being given treatment. Each treatment was replicated three times. The results showed that the application of leaf extract of the C. fragrans affected on reducing the blood glucose levels of alloxan-induced rats. The used of ethanolic extract of C. fragrans 100 mg/kg bw resulted in the highest percentage decrease in blood glucose (54.46 ± 5.60%) of hyperglycemic rats induced by alloxan, close to a positive control (56.63 ± 1.86%). 

Article Details

How to Cite
Silaban, S. (2023). ANTIDIABETIC ACTIVITY OF LEAF EXTRACT OF Clerodenrum fragrans Vent Willd IN Rattus novergicus INDUCED BY ALLOXAN. Jurnal Bioteknologi Dan Biosains Indonesia, 9(1), 119–125. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1792
Section
Articles

References

Ajiboye BO, Oloyede HOB, Salawu MO (2017) Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats. Food Sci Nutr 6:137-145. doi: 10.1002/fsn3.538

American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:S81–S90. doi: 10.2337/dc14-S081

Balsells M, García-Patterson A, Solà I, Roqué M, Gich I, Corcoy R (2015) Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: A systematic review and meta-analysis. BMJ 350:h102. doi: 10.1136/bmj.h102

Dolenšek J, Špeli? D, Klemen MS, Žalik B, Gosak M, Rupnik MS, Stožer A (2015) Membrane potential and calcium dynamics in beta cells from mouse pancreas tissue slices: Theory, experimentation, and analysis. Sensors 15:27393-27419. doi: 10.3390/s151127393

Etuk EU, Muhammed BJ (2010) Evidence based analysis of chemical method of induction of diabetes mellitus in experimental rats. Int J Res Pharm Sci 1:139-142

Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P (2016) Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients 8:461. doi: 10.3390/nu8080461

Ibitoye OB, Ajiboye TO (2018) Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch Physiol Biochem 124:410-417. doi: 10.1080/13813455.2017.1415938

Ighodaro OM, Adeosun AM, Akinloye OA (2017) Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 53:365-374. doi: 10.1016/j.medici.2018.02.001

Johns EC, Denison FC, Norman JE, Reynolds RM (2018) Gestational diabetes mellitus: Mechanisms, treatment, and complications. Trends Endocrinol Metab 29:743-754. doi: 10.1016/j.tem.2018.09.004

Khamchan A, Paseephol T, Hanchang W (2018) Protective effect of wax apple (Syzygium samarangense (Blume) Merr & LM Perry) against streptozotocin-induced pancreatic ß-cell damage in diabetic rats. Biomed Pharmacother 108:634-645. doi: 10.1016/j.biopha.2018.09.072

Lenzen S (2008) Oxidative stress: The vulnerable ?-cell. Biochem Soc Trans 36:343-347. doi: 10.1042/BST0360343

Lorincz R, Emfinger CH, Walcher A, Giolai M, Krautgasser C, Remedi MS, Nichols CG, Meyer D (2018) In vivo monitoring of intracellular Ca2+ dynamics in the pancreatic ?-cells of zebrafish embryos. Islets 10:221-238. doi: 10.1080/19382014.2018.1540234

Luka?ínová A, Mojžiš J, Be?a?ka R, Keller J, Maguth T, Kurila P, Vaško L, Rácz O, Ništiar F (2008) Preventive effects of flavonoids on alloxan-induced diabetes mellitus in rats. Acta Vet Brno 77:175-182. doi: 10.2754/avb200877020175

Mahargyani W (2019) Uji aktivitas antidiabetes ekstrak n-heksan kulit buah naga merah (Hylocereus polyrhyzus). EduChemia 4:13-23. doi: 10.30870/educhemia.v4i1.3958

Sasmita FW, Susetyarini E, Husamah H, Pantiwati Y (2017) Efek ekstrak daun kembang bulan (Tithonia diversifolia) terhadap kadar glukosa darah tikus wistar (Rattus norvegicus) yang diinduksi alloxan. Biosfera 34:22-31. doi: 10.20884/1.mib.2017.34.1.412

Sapiun Z, Pangalo P, Imran AK, Wicita PS, Daud RPA (2020) Determination of total flavonoid levels of ethanol extract Sesewanua leaf (Clerodendrum fragrans Wild) with maceration method using UV-Vis spectrofotometry. Pharmacogn J 12:356-360. doi: 10.5530/pj.2020.12.56

Sharma B, Siddiqui S, Ram G, Chaudhary M, Sharma G (2013) Hypoglycemic and hepatoprotective effects of processed Aloe vera gel in a mice model of alloxan induced diabetes mellitus. J Diabetes Metab 4:1000303. doi: 10.4172/2155-6156.1000303

Silaban S, Nainggolan B, Simorangkir M, Zega TS, Pakpahan, PM, Gurning K (2022) Antibacterial activities test and brine shrimp lethality test of Simargaolgaol (Aglaonema modestum Schott ex Engl.) leaves from North Sumatera, Indonesia. Rasayan J Chem 15:745-750. doi: 10.31788/RJC.2022.1526911

Simorangkir M, Hutabarat W, Nainggolan B, Silaban S (2019a) Antioxidant and antibacterial activities of non-polar to polar solvent extracts of sarang banua (Clerodenrum fragrans Vent Wild) leaves. Rasayan J Chem 12:959-965. doi: 10.31788/RJC.2019.1225095

Simorangkir M, Nainggolan B, Silaban S (2019b) Antibacterial potential of n-hexana, ethyl acetate, ethanol extracts of sarang banua leaf (Clerodendrum fragrans Vent Willd) against Salmonella enterica. J Biosains 5:92-98. doi: 10.24114/jbio.v5i2.13157

Simorangkir M, Nainggolan B, Doloksaribu JF, Silaban S (2020) Effect of sarang banua (Clerodendrum fragrans Vent Willd) leaves extract on serum globulin levels of rabbit (Oryctolagus cuniculus). J Phys: Conf Ser 1485:012016. doi: 10.1088/1742-6596/1485/1/012016

Simorangkir M, Nainggolan B, Juwitaningsih T, Silaban S (2021) The toxicity of n-hexane, ethyl acetate and ethanol extracts of sarang banua (Clerodendrum fragrans Vent Willd) leaves by brine shrimp lethality test (BSLT) method. J Phys: Conf. Ser 1811:012053. doi: 10.1088/1742-6596/1811/1/012053

Simorangkir M, Hutapea A (2016) Aktivitas antidiabetes ekstrak daun ranti hitam (Solanum blumei Nees Ex Blume) pada tikus putih yang diinduksi aloksan. Prosiding Semnas Kimia dan Pendidikan, 30-31 May 2016, p. 152-154

Sinaga E, Fitrayadi A, Asrori A, Rahayu SE, Suprihatin S, Prasasty VD (2021) Hepatoprotective effect of Pandanus odoratissimus seed extracts on paracetamol-induced rats. Pharm Biol 59:31-39. doi: 10.1080/13880209.2020.1865408

Situmeang B, Ibrahim, AM, Bialangi N, Musa WJ, Silaban S (2019) Antibacterial activity and phytochemical screening of kesambi (Sapindaceae) against Escherichia coli and Staphylococcus aureus. J Pend Kimia 11:14-17. doi: 10.24114/jpkim.v11i1.13078

Solikhah TI, Setiawan B, Ismukada DR (2020) Antidiabetic activity of papaya leaf extract (Carica papaya L.) isolated with maceration method in alloxan-induces diabetic mice. Sys Rev Pharm 11:774-778. doi: 10.31838/srp.2020.9.109

Zega TS, Pakpahan PM, Siregar R, Sitompul G, Silaban S (2021) Antibacterial activity test of Simargaolgaol (Aglaonema modestum Schott ex Engl) leaves extract against Escherichia coli and Salmonella typhi bacteria. J Pend Kimia 13:151-158. doi: 10.24114/jpkim.v13i2.26989

Zhang Y, Wu L, Ma Z, Cheng J, Liu J (2015) Anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of flavonoids from corn silk on STZ-induced diabetic mice. Molecules 21:E7. doi: 10.3390/molecules21010007