KARAKTERISASI BERBASIS MARKA MOLEKULER ITS2 TERHADAP SUB-SPESIES KOMPLEKS Anopheles vagus vagus DAN Anopheles vagus limosus

Main Article Content

Kartika Senjarini

Abstract

The presence of intraspecies variations of An. vagus later categorized as the subspecies of An. vagus vagus and An. vagus limosus, could be an obstacle to the identification process, which is an important step for malaria vector’s competence characterization. Based on morphological identification, those subspecies could be distinguished by the presences of pale scales in prehumeral and pale bands  in proboscis. The objective of this research was to compare subspecies complexes of An. vagus morphologically and molecularly using Internal Transcribed Spacer 2 (ITS2). Anopheles samples were collected from Bangsring, Banyuwangi. Their phylogenetic tree was constructed by using NJ method based on their ITS2 sequences. BLAST result showed that An. vagus vagus and An. vagus limosus were similar to An. vagus FJ654649.1 from East Java Indonesia and East Timor based on its 99% homology and their molecular distance. The Neighbour Joining (NJ) tree grouped those subspecies in one clade with a boostrap value of 82%. This subspeciation might be due to the different rates of evolution. ITS2 sequences of An. vagus vagus and An. vagus limosus were submitted to GenBank with the accession number of MW314227.1 and MW319822.1, respectively.

Article Details

How to Cite
Senjarini, K. (2023). KARAKTERISASI BERBASIS MARKA MOLEKULER ITS2 TERHADAP SUB-SPESIES KOMPLEKS Anopheles vagus vagus DAN Anopheles vagus limosus. Jurnal Bioteknologi Dan Biosains Indonesia, 8(2), 174–184. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1797
Section
Articles

References

Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acid Res 25: 4692–4693. doi: 10.1093/nar/25.22.4692

Batovska J, Cogan NOI, Lynch SE, Blacket MJ (2017) Using next-generation sequencing for DNA barcoding: Capturing allelic variation in ITS2. G3 (Bethesda) 7: 19–29. doi: 10.1534/g3.116.036145

Beebe NW (2018) DNA barcoding mosquitoes: Advice for potential prospectors. Parasitology 145: 622–633. doi: 10.1017/S0031182018000343

Blažejová H, Šebesta O, Rettich F, Mendel J, ?abanová V, Miterpáková M, Betášová L, Peško J, Hubálek Z, Kampen H, Rudolf I (2018) Cryptic species Anopheles daciae (Diptera: Culicidae) found in the Czech Republic and Slovakia. Parasitol Res 117: 315–321. doi: 10.1007/s00436-017-5670-0

Bowman LR, Runge-Ranzinger S, McCall PJ (2014) Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl Trop Dis 8: e2848. doi: 10.1371/journal.pntd.0002848

Cagampang-Ramos A, Darsie RF (1970) Illustrated keys to the Anopheles mosquitoes of the Philippine Islands. Technical Report 70–1. USAF Fifth Epidemiological Flight, San Francisco

Chatpiyaphat K, Sumruayphol S, Dujardin JP, Samung Y, Phayakkaphon A, Cui L, Ruangsittichai J, Sungvornyothin S, Sattabongkot J, Sriwichai P (2020) Geometric morphometrics to distinguish the cryptic species Anopheles minimus and An. harrisoni in malaria hot spot villages, western Thailand. Med Vet Entomol 35: 293–301. doi: 10.1111/mve.12493

Chatzou M, Magis C, Chang JM, Kemena C, Bussotti G, Erb I, Notredame C (2016) Multiple sequence alignment modeling: Methods and applications. Brief Bioinformatics 17: 1009–1023. doi: 10.1093/bib/bbv099

Davidson JR, Wahid I, Sudirman R, Makuru V, Hasan H, Arfah AM, Nur N, Hidayat MY, Hendershot AL, Xiao H, Yu X, Asih PBS, Syafruddin D, Lobo NF (2019) Comparative field evaluation of kelambu traps, barrier screens and barrier screens with eaves for longitudinal surveillance of adult Anopheles mosquitoes in Sulawesi, Indonesia. Parasit Vectors 12: 399. doi: 10.1186/s13071-019-3649-7

Fouet C, Kamdem C, Gamez S, White BJ (2017) Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl 10: 897–906. doi: 10.1111/eva.12492

Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Michael Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin J-J, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–149. doi: 10.1126/science.1076181

Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120. doi: 10.1007/BF01731581

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549. doi: 10.1093/molbev/msy096

Lobo NF, St Laurent B, Sikaala CH, Hamainza B, Chanda J, Chinula D, Krishnankutty SM, Mueller JD, Deason NA, Hoang QT, Boldt HL, Thumloup J, Stevenson J, Seyoum A, Collins FH (2015) Unexpected diversity of Anopheles species in Eastern Zambia: Implications for evaluating vector behavior and interventions using molecular tools. Sci Rep 5: 17952. doi: 10.1038/srep17952

Lopez-Rubio A, Suaza-VAsco J, Marcet PL, Ruiz-Molina N, Caceres L, Porter C, Uribe S (2016) Use of DNA barcoding to distinguish the malaria vector Anopheles neivai in Colombia. Zootaxa 4175: 377–389. doi: 10.11646/zootaxa.4175.4.7

Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C (2016) Mosquito vectors and the globalization of Plasmodium falciparum malaria. Annu Rev Genet 50: 447–465. doi: 10.1146/annurev-genet-120215-035211

Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa JI, Kamya MR, Conrad MD, Dorsey G, Akol AM, Staedke SG, Lindsay SW, Egonyu JP (2019) Impact of vector control interventions on malaria transmission intensity, outdoor vector biting rates and Anopheles mosquito species composition in Tororo, Uganda. Malar J 18: 445. doi: 10.1186/s12936-019-3076-4

O’Connor CT, Soepanto A (2013) Pictorial Key for Adult Anopheles in Indonesia and Pictorial Larvae Anopheles in Indonesia. Dirjen P2PL and P2B2. Ministry of Health Indonesia Press, Jakarta

Ototo EN, Mbugi JP, Wanjala CL, Zhou G, Githeko AK, Yan G (2015) Surveillance of malaria vector population density and biting behaviour in western Kenya. Malar J 14: 244. doi: 10.1186/s12936-015-0763-7

Reid JA (1968) Anopheline Mosquitoes of Malaya and Borneo. Institute for Medical Research Malaysia, Kuala Lumpur

Russo CAM, Selvatti AP (2018) Bootstrap and rogue identification tests for phylogenetic analyses. Mol Biol Evol 35: 2327–2333. doi: 10.1093/molbev/msy118

St Laurent B, Sukowati S, Burton TA, Bretz D, Zio M, Firman S, Sumardi, Sudibyo H, Safitri A, Suwito, Asih PB, Kosasih S, Shinta, Hawley WA, Burkot TR, Collins FH, Syafruddin D, Lobo NF (2018) Comparative evaluation of anopheline sampling methods in three localities in Indonesia. Malar J 17: 13. doi: 10.1186/s12936-017-2161-9

Surendran SN, Sarma DK, Jude PJ, Kemppainen P, Kanthakumaran N, Gajapathy K, Peiris LB, Ramasamy R, Walton C (2013) Molecular characterization and identification of members of the Anopheles subpictus complex in Sri Lanka. Malar J 12: 304. doi: 10.1186/1475-2875-12-304

Weeraratne TC, Surendran SN, Karunaratne SHPP (2018) DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka. Parasites Vectors 11: 266. doi: 10.1186/s13071-018-2810-z

WHO (2020) World malaria report 2020. 20 years of global progress and challenges. World Health Organization. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020. Diakses 05 November 2020

Zarowiecki M, Walton C, Torres E, McAlister E, Htun PT, Sumrandee C, Sochanta T, Dinh TH, Ng LC, Linton YM (2011) Pleistocene genetic connectivity in a widespread, open-habitat-adapted mosquito in the Indo-Oriental region. J Biogeogr 38: 1422–1432. doi: 10.1111/j.1365-2699.2011.02477.x

Zhang W, Tian W, Gao Z, Wang G, Zhao H (2020) Phylogenetic utility of rRNA ITS2 sequence-structure under functional constraint. Int J Mol Sci 21: 6395. doi: 10.3390/ijms21176395

Zheng XL (2020) Unveiling mosquito cryptic species and their reproductive isolation. Insect Mol Biol 29: 499–510. doi: org/10.1111/imb.12666

Zomuanpuii R, Ringngheti L, Brindha S, Gurusubramanian G, Kumar NS (2013) ITS2 characterization and Anopheles species identification of the subgenus Cellia. Acta Trop 125: 309–319. doi: 10.1016/j.actatropica.2012.12.001