IN-SILICO ANALYSIS OF SYMBIONT BACTERIA DIVERSITY IN THE MIDGUT OF Aedes aegypti USING 16S rDNA MOLECULAR MARKERS DATABASE

Main Article Content

Syubbanul Wathon
Aufar Finasrullah
Rike Oktarianti
Kartika Senjarini

Abstract

Dengue Hemorrhagic Fever (DHF) is caused by the dengue virus, which is transmitted through Aedes aegypti mosquitoes when they feed on human blood.  To effectively control the DHF vector, it is crucial to accurately characterize the symbiont bacteria associated with Ae. aegypti through an in-silico approach to identify potential targets. This study utilized in- silico analysis based on the 16S rDNA molecular marker to explore the diversity of symbiont bacteria obtained from bioinformatics databases. The analysis and visualization of bacterial diversity were conducted using the Pathosystem Resource Integration Center (PATRIC). The analysis results revealed that bacterial diversity in the midgut of Ae. aegypti, categorized as culturable and non-culturable bacteria, exhibited similar abundance patterns at the family level, albeit with varying detection rates. The most dominant taxa included the phylum Proteobacteria, class Gammaproteobacteria, order Enterobacterales, and family Enterobacteriaceae. Within the culturable bacteria category, the dominant taxa were the genus Salmonella and species Salmonella enterica, whereas the non-culturable bacteria category indicated the prevalence of the genus Escherichia and species Escherichia coli.

Article Details

How to Cite
Wathon, S., Finasrullah, A., Oktarianti, R., & Senjarini, K. (2023). IN-SILICO ANALYSIS OF SYMBIONT BACTERIA DIVERSITY IN THE MIDGUT OF Aedes aegypti USING 16S rDNA MOLECULAR MARKERS DATABASE. Jurnal Bioteknologi Dan Biosains Indonesia, 10(2), 158–173. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/2841
Section
Articles

References

Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its sus-ceptibility to dengue-2 virus. PLOS ONE 7:e40401. doi: 10.1371/journal.pone.0040401

Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR (2019) Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 9:12160. doi: 10.1038/s41598-019-48414-8

Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR, Strand MR (2017) Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc Natl Acad Sci USA 114:E5362– E5369. doi: 10.1073/pnas.1702983114

Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Mur-phy-Olson D, Nguyen M, Nordberg EK,

Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R (2020) The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. doi: 10.1093/nar/gkz943

Gaio D, DeMaere MZ, Anantanawat K, Ea-mens GJ, Liu M, Zingali T, Falconer L, Chapman TA, Djordjevic SP, Darling AE (2021) A large-scale metagenomic survey dataset of the post-weaning piglet gut lumen. GigaScience 10:giab039. doi: 10.1093/gigascience/giab039

Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S (2020) Mosquito microbiota and implications for disease control. Trends Parasitol 36:98–111. doi: 10.1016/j.pt.2019.12.001

Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK (2016) MFPPI – Multi FASTA

ProtParam Interface. Bioinformation 12:74–77. doi: 10.6026/97320630012074

Harapan H, Michie A, Sasmono RT, Imrie A (2020) Dengue: A Minireview. Viruses 12:829. doi: 10.3390/v12080829

Kementerian Kesehatan Republik In-donesia (KemenKes RI). 2022. Profil Kesehatan Indonesia 2021. Jakarta: Kementerian Kesehatan Republik In-donesia

Koh C, Allen SL, Herbert RI, McGraw EA, Chenoweth SF (2018) The transcrip-tional response of Aedes aegypti with variable extrinsic incubation periods for dengue virus. Genome Biol Evol 10:3141–3151. doi 10.1093/gbe/evy230

Kozlova EV, Hegde S, Roundy CM, Golov-ko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL (2021) Microbial interac-tions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME J 15:93–108. doi: 10.1038/s41396-020-00763-3

Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S (2018) Mosquito innate immunity. In-sects 9:95. doi: 10.3390/insects9030095

Lee W-S, Webster JA, Madzokere ET, Ste-phenson EB, Herrero LJ (2019) Mos-quito antiviral defense mechanisms: a delicate balance between innate im-munity and persistent viral infection. Parasites & Vectors 12:165. doi: 10.1186/s13071-019-3433-8

Malassigné S, Valiente Moro C, Luis P (2020) Mosquito Mycobiota: An over-view of non-entomopathogenic fungal interactions. Pathogens 9:564. doi: 10.3390/pathogens9070564

Mapder T, Aaskov J, Burrage K (2020) Ad-ministration of defective virus inhibits dengue transmission into mosquitoes. Viruses 12:558. doi: 10.3390/v12050558

Nouzova M, Clifton ME, Noriega FG (2019) Mosquito adaptations to hematopha-gia impact pathogen transmission. Curr Opin Insect Sci 34:21–26. doi: 10.1016/j.cois.2019.02.002

Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visual-ization in a web browser. BMC Bioin-formatics 12:385. doi: 10.1186/1471-2105-12-385

Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z (2012) Wolbachia induces reactive oxygen species (ROS)- de-pendent activation of the toll pathway to control dengue virus in the mosqui-to Aedes aegypti. Proc Natl Acad Sci USA 109: E23–E31. doi: 10.1073/pnas.1116932108

Santos A, van Aerle R, Barrientos L, Mar-tinez-Urtaza J (2020) Computational methods for 16S metabarcoding stud-ies using Nanopore sequencing data. Comput Struct Biotechnol J 18:296–305. doi: 10.1016/j.csbj.2020.01.005

Saraiva RG, Fang J, Kang S, Angleró- Rodríguez YI, Dong Y, Dimopoulos G (2018) Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLOS Negl Trop Dis 12:e0006443. doi: 10.1371/journal.pntd.0006443

Sarma DK, Kumar M, Dhurve J, Pal N, Sharma P, James MM, Das D, Mishra S, Shubham S, Kumawat M, Verma V, Tiwari RR, Nagpal R, Marotta F (2022) Influence of host blood meal source on gut microbiota of wild caught Aedes aegypti, a dominant ar-boviral disease vector. Microorgan-isms 10:332. doi: 10.3390/microorganisms10020332

Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Schoch CL, Sherry ST, Karsch- Mizrachi I (2021) GenBank. Nucleic Acids Res 49:D92–D96. doi: 10.1093/nar/gkaa1023

Scolari F, Casiraghi M, Bonizzoni M (2019) Aedes spp. and their microbiota: A Review. Front Microbiol 10:2036. doi: 10.3389/fmicb.2019.02036

Simões ML, Caragata EP, Dimopoulos G (2018) Diverse host and restriction factors regulate mosquito–pathogen interactions. Trends Parasitol 34:603– 616. doi: 10.1016/j.pt.2018.04.011

Sun B, Zhang X, Zhang H, Liu H, Sun L, Tan Q, Liang M, Wu D, Liu D (2020) Genomic epidemio-logical characteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLOS Negl Trop Dis 14:e0008049. doi: 10.1371/journal.pntd.0008049

Tantowijoyo W, Andari B, Arguni E, Budi-wati N, Nurhayati I, Fitriana I, Ernesia I, Daniwijaya EW, Supriyati E, Yusdi-ana DH, Victorius M, Wardana DS, Ardiansyah H, Ahmad RA, Ryan PA, Simmons CP, Hoffmann AA, Rancès E, Turley AP, Johnson P, Utarini A, O’Neill SL (2020) Stable establish-ment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, In-donesia. PLOS Negl Trop Dis 14:e0008157. doi: 10.1371/journal.pntd.0008157

Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I (2012) Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol 80:556–565. doi: 10.1111/j.1574-6941.2012.01317.x

Wang Y, Gilbreath III TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mos-quito Anopheles gambiae in Kenya. PLOS ONE 6:e24767. doi: 10.1371/journal.pone.0024767

Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Mur-phy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all- bacterial Bioinformat-ics Database and Analysis Resource Center. Nucleic Acids Res 45:D535–D542. doi: 10.1093/nar/gkw1017

Wilke ABB, Marrelli MT (2015) Para-transgenesis: a promising new strate-gy for mosquito vector control. Para-sites & Vectors 8:342. doi: 10.1186/s13071-015-0959-2

Wu P, Yu X, Wang P, Cheng G (2019) Ar-bovirus lifecycle in mosquito: acquisi-tion, propagation and transmission. Expert Rev Mol Med 21:e1. doi: 10.1017/erm.2018.6

Zhang L, Wang S-M (2020) A time-periodic and reaction–diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal-ysis: Real World Applications 51:102988. doi: 10.1016/j.nonrwa.2019.1029