IN-SILICO ANALYSIS OF SYMBIONT BACTERIA DIVERSITY IN THE MIDGUT OF Aedes aegypti USING 16S rDNA MOLECULAR MARKERS DATABASE
Main Article Content
Abstract
Dengue Hemorrhagic Fever (DHF) is caused by the dengue virus, which is transmitted through Aedes aegypti mosquitoes when they feed on human blood. To effectively control the DHF vector, it is crucial to accurately characterize the symbiont bacteria associated with Ae. aegypti through an in-silico approach to identify potential targets. This study utilized in- silico analysis based on the 16S rDNA molecular marker to explore the diversity of symbiont bacteria obtained from bioinformatics databases. The analysis and visualization of bacterial diversity were conducted using the Pathosystem Resource Integration Center (PATRIC). The analysis results revealed that bacterial diversity in the midgut of Ae. aegypti, categorized as culturable and non-culturable bacteria, exhibited similar abundance patterns at the family level, albeit with varying detection rates. The most dominant taxa included the phylum Proteobacteria, class Gammaproteobacteria, order Enterobacterales, and family Enterobacteriaceae. Within the culturable bacteria category, the dominant taxa were the genus Salmonella and species Salmonella enterica, whereas the non-culturable bacteria category indicated the prevalence of the genus Escherichia and species Escherichia coli.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a). Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-NonCommercial-ShareAlike 4.0 International that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b). Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its sus-ceptibility to dengue-2 virus. PLOS ONE 7:e40401. doi: 10.1371/journal.pone.0040401
Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR (2019) Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 9:12160. doi: 10.1038/s41598-019-48414-8
Coon KL, Valzania L, McKinney DA, Vogel KJ, Brown MR, Strand MR (2017) Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc Natl Acad Sci USA 114:E5362– E5369. doi: 10.1073/pnas.1702983114
Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Mur-phy-Olson D, Nguyen M, Nordberg EK,
Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R (2020) The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. doi: 10.1093/nar/gkz943
Gaio D, DeMaere MZ, Anantanawat K, Ea-mens GJ, Liu M, Zingali T, Falconer L, Chapman TA, Djordjevic SP, Darling AE (2021) A large-scale metagenomic survey dataset of the post-weaning piglet gut lumen. GigaScience 10:giab039. doi: 10.1093/gigascience/giab039
Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S (2020) Mosquito microbiota and implications for disease control. Trends Parasitol 36:98–111. doi: 10.1016/j.pt.2019.12.001
Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK (2016) MFPPI – Multi FASTA
ProtParam Interface. Bioinformation 12:74–77. doi: 10.6026/97320630012074
Harapan H, Michie A, Sasmono RT, Imrie A (2020) Dengue: A Minireview. Viruses 12:829. doi: 10.3390/v12080829
Kementerian Kesehatan Republik In-donesia (KemenKes RI). 2022. Profil Kesehatan Indonesia 2021. Jakarta: Kementerian Kesehatan Republik In-donesia
Koh C, Allen SL, Herbert RI, McGraw EA, Chenoweth SF (2018) The transcrip-tional response of Aedes aegypti with variable extrinsic incubation periods for dengue virus. Genome Biol Evol 10:3141–3151. doi 10.1093/gbe/evy230
Kozlova EV, Hegde S, Roundy CM, Golov-ko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL (2021) Microbial interac-tions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME J 15:93–108. doi: 10.1038/s41396-020-00763-3
Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S (2018) Mosquito innate immunity. In-sects 9:95. doi: 10.3390/insects9030095
Lee W-S, Webster JA, Madzokere ET, Ste-phenson EB, Herrero LJ (2019) Mos-quito antiviral defense mechanisms: a delicate balance between innate im-munity and persistent viral infection. Parasites & Vectors 12:165. doi: 10.1186/s13071-019-3433-8
Malassigné S, Valiente Moro C, Luis P (2020) Mosquito Mycobiota: An over-view of non-entomopathogenic fungal interactions. Pathogens 9:564. doi: 10.3390/pathogens9070564
Mapder T, Aaskov J, Burrage K (2020) Ad-ministration of defective virus inhibits dengue transmission into mosquitoes. Viruses 12:558. doi: 10.3390/v12050558
Nouzova M, Clifton ME, Noriega FG (2019) Mosquito adaptations to hematopha-gia impact pathogen transmission. Curr Opin Insect Sci 34:21–26. doi: 10.1016/j.cois.2019.02.002
Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visual-ization in a web browser. BMC Bioin-formatics 12:385. doi: 10.1186/1471-2105-12-385
Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z (2012) Wolbachia induces reactive oxygen species (ROS)- de-pendent activation of the toll pathway to control dengue virus in the mosqui-to Aedes aegypti. Proc Natl Acad Sci USA 109: E23–E31. doi: 10.1073/pnas.1116932108
Santos A, van Aerle R, Barrientos L, Mar-tinez-Urtaza J (2020) Computational methods for 16S metabarcoding stud-ies using Nanopore sequencing data. Comput Struct Biotechnol J 18:296–305. doi: 10.1016/j.csbj.2020.01.005
Saraiva RG, Fang J, Kang S, Angleró- Rodríguez YI, Dong Y, Dimopoulos G (2018) Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLOS Negl Trop Dis 12:e0006443. doi: 10.1371/journal.pntd.0006443
Sarma DK, Kumar M, Dhurve J, Pal N, Sharma P, James MM, Das D, Mishra S, Shubham S, Kumawat M, Verma V, Tiwari RR, Nagpal R, Marotta F (2022) Influence of host blood meal source on gut microbiota of wild caught Aedes aegypti, a dominant ar-boviral disease vector. Microorgan-isms 10:332. doi: 10.3390/microorganisms10020332
Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Schoch CL, Sherry ST, Karsch- Mizrachi I (2021) GenBank. Nucleic Acids Res 49:D92–D96. doi: 10.1093/nar/gkaa1023
Scolari F, Casiraghi M, Bonizzoni M (2019) Aedes spp. and their microbiota: A Review. Front Microbiol 10:2036. doi: 10.3389/fmicb.2019.02036
Simões ML, Caragata EP, Dimopoulos G (2018) Diverse host and restriction factors regulate mosquito–pathogen interactions. Trends Parasitol 34:603– 616. doi: 10.1016/j.pt.2018.04.011
Sun B, Zhang X, Zhang H, Liu H, Sun L, Tan Q, Liang M, Wu D, Liu D (2020) Genomic epidemio-logical characteristics of dengue fever in Guangdong province, China from 2013 to 2017. PLOS Negl Trop Dis 14:e0008049. doi: 10.1371/journal.pntd.0008049
Tantowijoyo W, Andari B, Arguni E, Budi-wati N, Nurhayati I, Fitriana I, Ernesia I, Daniwijaya EW, Supriyati E, Yusdi-ana DH, Victorius M, Wardana DS, Ardiansyah H, Ahmad RA, Ryan PA, Simmons CP, Hoffmann AA, Rancès E, Turley AP, Johnson P, Utarini A, O’Neill SL (2020) Stable establish-ment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, In-donesia. PLOS Negl Trop Dis 14:e0008157. doi: 10.1371/journal.pntd.0008157
Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I (2012) Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol 80:556–565. doi: 10.1111/j.1574-6941.2012.01317.x
Wang Y, Gilbreath III TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mos-quito Anopheles gambiae in Kenya. PLOS ONE 6:e24767. doi: 10.1371/journal.pone.0024767
Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Mur-phy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all- bacterial Bioinformat-ics Database and Analysis Resource Center. Nucleic Acids Res 45:D535–D542. doi: 10.1093/nar/gkw1017
Wilke ABB, Marrelli MT (2015) Para-transgenesis: a promising new strate-gy for mosquito vector control. Para-sites & Vectors 8:342. doi: 10.1186/s13071-015-0959-2
Wu P, Yu X, Wang P, Cheng G (2019) Ar-bovirus lifecycle in mosquito: acquisi-tion, propagation and transmission. Expert Rev Mol Med 21:e1. doi: 10.1017/erm.2018.6
Zhang L, Wang S-M (2020) A time-periodic and reaction–diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal-ysis: Real World Applications 51:102988. doi: 10.1016/j.nonrwa.2019.1029