PENGARUH CEKAMAN KEKERINGAN TERHADAP EKSPRESI GEN KETAHANAN OSCATA DAN OSAPX1 PADA PADI TOLERAN KEKERINGAN

Main Article Content

Mohammad Ubaidillah

Abstract


Rice is widely cultivated in Indonesia, where one of the problems is drought. Rice plant growth can be inhibited due to a lack of water, which could cause oxidative stress. One mechanism for self-defence involves activating antioxidative genes. This study aims to determine the regulatory response of OsCATA and OsAPX1 resistance genes in rice under drought stress. The rice varieties used were those already pre-tested, including Siak Raya, Sertani 1, Indragiri, IR64. Drought treatments were 0% (control) and 15% PEG 6000. Results indicated that the interaction of rice variety treatment and drought stress had a highly significant effect on the root length and chlorophyll content but no significant effect on the plant height. Also, the gene expression of OsCATA and OsAPX1 increased in rice plants exposed to drought stress. Variety Sertani 1 was recommended due to their high average increase in root length, reduced average plant height and chlorophyll content, as well as increased gene expression in conditions of drought stress.




Padi banyak dibudidayakan di Indonesia, di mana salah satu permasalahannya adalah kekeringan. Pertumbuhan tanaman padi dapat terhambat akibat kekurangan air, yang dapat menyebabkan terjadinya stres oksidatif. Salah satu mekanisme pertahanan diri adalah mengaktifkan gen antioksidatif. Penelitian ini bertujuan mengetahui respons regulasi gen ketahanan OsCATA dan OsAPX1 pada padi yang mengalami cekaman kekeringan. Benih varietas padi yang digunakan sudah diuji pendahuluan sebelumnya, antara lain Siak Raya, Sertani 1, Indragiri, IR64. Perlakuan kekeringan yaitu 0% (kontrol) dan 15% PEG 6000. Hasil penelitian menunjukkan interaksi perlakuan varietas padi dengan cekaman kekeringan signifikan terhadap panjang akar, dan total klorofil namun tidak signifikan terhadap tinggi tanaman. Ekspresi gen OsCATA dan OsAPX1 meningkat pada tanaman padi yang mengalami cekaman kekeringan. Tanaman yang direkomendasikan adalah varietas Sertani 1 yang memiliki peningkatan rata-rata panjang akar yang tinggi, penurunan rata-rata tinggi tanaman, dan kandungan klorofil rendah, serta meningkatnya ekspresi gen pada kondisi cekaman kekeringan.


Article Details

How to Cite
Ubaidillah, M. (2023). PENGARUH CEKAMAN KEKERINGAN TERHADAP EKSPRESI GEN KETAHANAN OSCATA DAN OSAPX1 PADA PADI TOLERAN KEKERINGAN . Jurnal Bioteknologi Dan Biosains Indonesia, 8(2), 276–285. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1807
Section
Articles

References

Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322: 93–103. doi: 10.1016/j.gene.2003.08.017

Ahmadikhah A, Marufinia A (2016) Effect of reduced plant height on drought tolerance in rice. 3 Biotech 6: 221 (2016). doi: 10.1007/s13205-016-0542-3

Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24: 23–58. doi: 10.1080/07352680590910410

Das K, Roychoudhury A. (2014) Reactive oxygen species ( ROS ) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2: 53. doi: 10.3389/fenvs.2014.00053

Huo Y, Wang M, Wei Y, Xia Z (2016) Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Front Plant Sci 6: 1223. doi: 10.3389/fpls.2015.01223

IRRI (2013) Standard evaluation system (SES) for Rice (5th Edition). International Rice Research Institute, Metro Manila

Islam MM, Kayesh E, Zaman E, Urmi TA, Haque MM (2018) Evaluation of rice (Oryza sativa L.) genotypes for drought tolerance at germination and early seedling stage. Agriculturists 16: 44–54. doi: 10.3329/agric.v16i1.37533

Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169: 336–344. doi: 10.1016/j.jplph.2011.10.010

Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: Current knowledge in root and tuber crops. Front Plant Sci 7: 1584. doi: 10.3389/fpls.2016.01584

Kim Y, Chung YS, Lee E, Tripathi P, Heo S (2020) Root response to drought stress in rice (Oryza sativa L.). Int J Mol Sci 21: 1513. doi: 10.3390/ijms21041513

Kim Y, Mun BG, Khan AL, Waqas M, Kim HH, Shahzad R, Imran M, Yun BW, Lee IJ (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One 13: e0192650. doi: 10.1371/journal.pone.0192650

Lakaew K, Akeprathumchai S, Thiravetyan P (2021) Foliar spraying of calcium acetate alleviates yield loss in rice (Oryza sativa L.) by induced anti-oxidative defence system under ozone and heat stresses. Ann Appl Biol 178: 414–426. doi: 10.1111/aab.12653

Lakra N, Nutan KK, Das P, Anwar K, Singla-Pareek SL, Pareek A (2015) A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery. J Plant Physiol 176: 36–46. doi: 10.1016/j.jplph.2014.11.005

Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24: 1487–1493.

Nahar S, Kalita J, Sahoo L, Tanti B (2016) Morphophysiological and molecular effects of drought stress in rice. Ann Plant Sci 5: 1409–1416. doi: 10.21746/aps.2016.09.001

Nahar S, Vemireddy LR, Sahoo L, Tanti B (2018) Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India. Rice Sci 25: 185–196. doi: 10.1016/j.rsci.2018.06.002

Obidiegwu JE, Bryan GJ, Jones HG, Prashar A (2015) Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci 6: 542. doi: 10.3389/fpls.2015.00542

Rossatto T, do Amaral MN, Benitez LC, Vighi IL, Braga EJB, de Magalhaes Junior A, Maia MAC, da Silva Pinto L (2017) Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plants 23: 865–875. doi: 10.1007/s12298-017-0467-2

Sen A, Challabathula D, Puthur JT (2021) UV-B priming of Oryza sativa seeds augments the innate tolerance potential in a tolerant variety more effectively toward NaCl and PEG stressors. J Plant Growth Regul 40: 1166–1180. doi: 10.1007/s00344-020-10177-2

Shakeel M, Khan SN, Saleem Y, Burgess PJ, Shafiq S (2019) Colour, water and chlorophyll loss in harvested broccoli (Brassica oleracea L. Italica) under ambient conditions in Pakistan. 246: 858–861. doi: 10.1016/j.scienta.2018.11.041

Sperdouli I, Mellidou I, Moustakas M (2021) Harnessing chlorophyll fluorescence for phenotyping analysis of wild and cultivated tomato for high photochemical efficiency under water deficit for climate change resilience. Climate 9: 154. doi: 10.3390/cli9110154

Sujinah, Jamil A (2016) Mekanisme respon tanaman padi terhadap cekaman kekeringan dan varietas toleran. Iptek Tanaman Pangan 11: 1–8

Vighi IL, Benitez LC, do Amaral MN, Auler PA, Moraes GP, Rodrigues GS, da Maia LC, Pinto LS, Braga EJB (2016) Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress. Genet Mol Res 15: gmr15048977. doi: 10.4238/gmr15048977

Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6: 458. doi: 10.3389/fpls.2015.00458

Yamori W, Zhang G, Takagaki M, Maruo T (2014) Feasibility study of rice growth in plant factories. J Rice Res 2: 119. doi: 10.4172/jrr.1000119