DETERMINATION OF OPTIMAL ANNEALING TEMPERATURE Vibrio alginolyticus PRIMERS USING POLYMERASE CHAIN REACTION METHOD

Main Article Content

Gladys Indira Putri
Muktiningsih Nurjayadi
Jefferson Lynford Declan
Ismaya Krisdawati
Dandy Akbar Juliansyah
Tiara Fahriza
Maharanianska Azzahra
Irvan Maulana
Irma Ratna Kartika
Fera Kurniadewi
Dalia Sukmawati
Vira Saamia4
Dwi Anna Oktaviani Saputro
I Made Wiranatha
Bassam Abomoelak
Hesham Ali El-Enshasy

Abstract

Food poisoning is a global issue of grave concern. If food is not properly cooked, it can be a medium for the spread of pathogenic bacteria. Vibrio alginolyticus is one of the pathogenic bacteria that can cause food poisoning. real-time Polymerase Chain Reaction (rt-PCR) can detect pathogenic bacteria in food, so it is necessary to determine the optimal annealing temperature. This research aims to obtain the optimal annealing temperature of the Va_Chr1_FR primer using Gradient PCR. The DNA concentration used was 174.5 with an A260/A280 purity of 1.94. The temperature range tested, 53°C-62°C, corresponds to the melting temperature of the Va_Chr1_FR primers. The primers designed were F5'-TTCTTCTGTTGTAGGTTCCG-F3' and R5'-CCAGCCCTCACATCTAATAC-R3'. Based on these results, a temperature of 60°C is deemed as the most optimal annealing temperature because it produces one of the brightest bands on electrophoresis with an amplicon length of 146 bp. The findings of this study will be beneficial to the development of Va_Chr1_FR Vibrio alginolyticus primers testing on food samples using the real-time PCR method. 

Article Details

How to Cite
Putri, G. I., Nurjayadi, M., Declan, J. L., Krisdawati, I., Juliansyah, D. A., Fahriza, T., … El-Enshasy, H. A. (2023). DETERMINATION OF OPTIMAL ANNEALING TEMPERATURE Vibrio alginolyticus PRIMERS USING POLYMERASE CHAIN REACTION METHOD. Jurnal Bioteknologi Dan Biosains Indonesia, 10(2), 346–354. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/2976
Section
Articles

References

Aizawa, S. (2019). Bacterial Flagella. In En-cyclopedia of Microbiology, 4th Edi-tion (4th ed., Issue March 2018). Elsevier Inc. https://doi.org/10.1016/B978-0-12-801238-3.02311-4

Ayu, D., & Nurdyansyah. (2017). Deteksi Molekuler Mikroorganisme Patogen pada Bahan Pangan dengan Metode RT-PCR (Molecular Detection of Food Pathogenic Microorganism by RT-PCR). Jurnal Ilmu Pangan Dan Hasil Pertanian, 1(1), 80–89.

Agars, C. S., West, P. A., Russek, E., Bray-ton, P. R., & Colwell, R. R. (1982). Ii @.16(6), 1110–1116.

Balacs, T. (1997). Research reports. International Journal of Aromatherapy, 8(2), 43–45. https://doi.org/10.1016/s0962-4562(97)80025-2

Boesenberg-smith, K. A., Pessarakli, M. M., & Donna, M. (2012). Clinical Microbi-ology Newsletter Assessment of DNA Yield and Purity : an Overlooked De-tail of PCR Troubleshooting. Clinical Microbiology Newsletter, 34(1), 1,3-6. https://doi.org/10.1016/j.clinmicnews.2011.12.002

Chart, H. (2012). Vibrio, mobiluncus, gard-nerella and spirillum: Cholera; vagi-nosis; rat bite fever. In Medical Micro-biology: Eighteenth Edition (Eight-eenth). Elsevier Ltd. https://doi.org/10.1016/B978-0-7020-4089- 4.00045-7

Cohen, N., Ennaji, H., Hassa, M., & Karib, H. (2006). The bacterial quality of red meat and offal in Casablanca (Moroc-co). Molecular Nutrition and Food Re-search, 50(6), 557–562. https://doi.org/10.1002/mnfr.200500180

Dolphin WD., Vleck D. 2014. Biological In-vestigations Lab Manual. McGraw-Hill Education.

Dorado, G., Besnard, G., Unver, T., & Her-nández, P. (2019). Polymerase Chain Reaction (PCR). Encyclopedia of Bi-omedical Engineering, 1–3(6), 473–492.

Fatchiyah, A. E., Widyarti, S., & Rahayu, S. (2011). Biologi molekuler prinsip da-sar analisis. Jakarta: Erlangga. xxiv+ 191hlm.

Jia, Y. (2012). Real-Time PCR. In Methods in Cell Biology (Vol. 112). https://doi.org/10.1016/B978-0-12-405914-6.00003-2

Jones, J. L. (2014). Vibrio: Introduction, In-cluding Vibrio parahaemolyticus, Vib-rio vulnificus, and Other Vibrio Spe-cies. In Encyclopedia of Food

Microbiology: Second Edition (Second Edi, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00345-1

Kristianto Nugroho, Rerenstradika Tizar Ter-ryana, Reflinur, & Puji Lestari. (2019). METODE EKSTRAKSI DNA TANA-MAN TANPA PRESIPITASI ETANOL UNTUK KEGIATAN POLYMERASE CHAIN REACTION (PCR). Jurnal Bi-oteknologi Dan Biosains Indone-sia, 6(1), 29–38. https://doi.org/10.29122/jbbi.v6i1.3082

Kusumaningrum, H. P. (2023). IDENTIFI-KASI MOLEKULER JERUK NIPIS TEGAL BERDASARKAN FRAGMEN GEN 18S RIBOSOMAL RNA. Jurnal Bioteknologi Dan Biosains Indone-sia, 8(2), 244–245. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/1804

Luh, N., Manik, P., Maryam, S., Parwata, I. P., Biologi, J. P., Matematika, F., Alam, P., Ganesha, U. P., Ganesha, P., Ganesha, P., & Ganesha, P. (2014). Perbandingan tampilan pita penanda DNA (Deoxyribonucleic Ac-id) standar penentuan panjang DNA kromosom pada pemisahan dengan menggunakan media berbeda. Semi-nar Nasional FMIPA UNDIKSHA, 306–310.

Nurjayadi, M., Islami, N., Pertiwi, Y. P., Saamia, V., & Wirana, I. M. (2018). Evaluation of primer detection capabilities of fimC Salmonella typhi using real time PCR for rapid detection of bacteria causes of food poisoning. IOP Conference Series: Materials Science and Engineering, 434, 012097. https://doi.org/10.1088/1757-899X/434/1/012097

Nurjayadi, M., Pertiwi, Y. P., Islami, N., Az-izah, N., Efrianti, U. R., Saamia, V., Wiranatha, I. M., Nastassya, L., & El-Enshasye, H. A. (2019). Detection of the Salmonella typhi bacteria in con-taminated egg using real-time PCR to develop rapid detection of food poi-soning bacteria. Biocatalysis and Ag-ricultural Biotechnology, 20(May), 101214.

Nurmawati, S., Prodjosoewojo, S., Chairun-nisa, N. H., Djauhari, H., & Alisjahba-na, B. (2019). Faktor Risiko Penyebab Foodborne Disease pada Siswa SD. Jurnal Sistem Kesehatan, 4(4), 181 & 183.

Rahayu, W. P., Nurjanah, S., & Komalasari, E. (2018). Escherichia coli: Patogeni-tas,Analisis, dan Kajian Risiko. Jour-nal of Chemical Information and Mod-eling, 53(9), 5.

Reilly, G. D., Reilly, C. A., Smith, E. G., & Baker-Austin, C. (2011). Vibrio algino-lyticus-associated wound infection acquired in British waters, Guernsey, July 2011. Eurosurveillance, 16(42), 3.

Sabir, M., Ennaji Moulay, M., & Cohen, N. (2013). Vibrio Alginolyticus : An Emerging Pathogen of Foodborne Diseases. International Journal of Science and Technology, 2(4), 302–309. http://www.journalofsciencestechnology.org/archive/2013/april_vol_2_no_4/66925136139495.pd

Sasmito, D. E. K., Kurniawan, R., Muhim-mah, I., & Metode, M. (2014). Karak-teristik Primer pada Polymerase Chain Reaction (PCR) untuk Sek-uensing DNA : Mini Review. 93–102.

Siyam, N., & Cahyati, W. H. (2018). Pen-ingkatan Kapasitas Penghuni Pondok Pesantren dalam Pencegahan Food Borne Diseases dengan Metode Peer Education. Visikes Jurnal Kesehatan Masyarakat, 17(2), 136–147.

Todd, E. (2020). Food-Borne Disease Pre-vention and Risk Assessment. Inter-national Journal of Environmental Re-search and Public Health, 17(14), 1–13. https://doi.org/10.3390/IJERPH17145129

Wang, J., Ding, Q., Yang, Q., Fan, H., Yu, G., Liu, F., Bello, B. K., Zhang, X., Zhang, T., Dong, J., Liu, G., & Zhao, P. (2021). Vibrio alginolyticus Triggers Inflammatory Response in Mouse Peritoneal Macrophages via Activa-tion of NLRP3 Inflammasome. Fron-tiers in Cellular and Infection Microbi-ology, 11(November), 1–13. https://doi.org/10.3389/fcimb.2021.769777

Wei, S., Zhao, H., Xian, Y., Hussain, M. A., & Wu, X. (2014). Multiplex PCR as-says for the detection of Vibrio algino-lyticus, Vibrio parahaemolyticus, Vib-rio vulnificus, and Vibrio cholerae with an internal amplification control. Diag-nostic Microbiology and Infectious Disease, 79(2), 115–118. https://doi.org/10.1016/j.diagmicrobio.2014.03.012

Yulianto, D., Sukrama, I. D. M., & Hen-drayana, M. A. (2019). Isolasi bakteri Escherichia coli pada lawar merah babi di kota Denpasar. Intisari Sains Medis, 10(1), 53–56. https://doi.org/10.15562/ism.v10i1.238