MICROBIAL CONTAMINATION AND BIOACTIVE COMPOUNDS OF JAMU BERAS KENCUR

Main Article Content

Wani Devita Gunardi
Virginia Marsella Teiseran
Kris Herawan Timotius

Abstract

Background: Jamu Beras Kencur (JBK) is recognized as an herbal medicine, containing two main components: the rhizome of Kaempferia galanga and rice. While previous research has identified bioactive compounds in galangal rhizomes, such as Ethyl p-Methoxycinnamate (EPMC), Ethyl-cinnamate, and Kaempferol, there are few reports on polar or aqueous compounds in JBK. LC-MS/MS and GC-MS enable comprehensive analysis of bioactive compounds, with LC-MS/MS detecting non-volatile, polar, and thermally sensitive compounds like flavonoids and glycosides, while GC-MS analyzes volatile and semi-volatile compounds, such as terpenoids, providing precise separation and identification. Therefore, this study were to know the amount and the growth of contaminant bacteria, yeast and mold; to determine the main bioactive compounds in JBK; and to determine the bioactive compound in aqueous and ethanolic extracts of rhizome that analysed with LC-MS/MS and GC-MS. Methode: JBK samples were sourced from local producers in West Jakarta, freshly prepared, and immediately analyzed for microbial contamination and bioactive compounds. Result: The analysis revealed microbial contamination in JBK, including Escherichia coli, Staphylococcus aureus, Coliform, yeast, and mold. Additionally, three novel flavonoid glycosides were identified: Chrysoeriol-4'-O-β-D-glucopyranoside, Patuletin-7-O-[6′′-(2-methylbutyryl)]-glucoside, and Acacetin-7-galactoside. Conclusion: Therefore, from the pharmacological perspective, JBK has the potentials as a healthy herbal drink. However, further preclinical and clinical studies are essential to validate its safety and efficacy for clinical use, which could pave the way for its integration into mainstream healthcare as a natural therapeutic option.

Article Details

How to Cite
Gunardi, W. D., Teiseran, V. M., & Timotius, K. H. (2024). MICROBIAL CONTAMINATION AND BIOACTIVE COMPOUNDS OF JAMU BERAS KENCUR. Jurnal Bioteknologi Dan Biosains Indonesia, 11(2), 262–277. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/5966
Section
Articles

References

Abd-Alla, H. I., Abu-Gabal, N. S., Hassan, A. Z., El-Safty, M. M., & Shalaby, N. M. M. (2012). Antiviral activity of Aloe hi-jazensis against some haemagglutinat-ing viruses infection and its phytocon-stituents. Archives of Pharmacal Re-search, 35(8), 1347–1354. https://doi.org/10.1007/s12272-012-0804-5

Amuamuta, A., Plengsuriyakarn, T., & Na-Bangchang, K. (2017). Anticholangio-carcinoma activity and toxicity of the Kaempferia galanga Linn. Rhizome ethanolic extract. BMC Complementary and Alternative Medicine, 17, 1–11.

Arambewela, L. S. R., Perera, A., & Wije-sundera, R. L. C. (1999). Antibacterial activity of Kaempheria galanga. Fitot-erapia, 70(4), 425–427.

Ardrey, R. E. (2003). Liquid chromatography-mass spectrometry: An introduction (Vol. 2). John Wiley & Sons. https://books.google.com/books?hl=id&lr=&id=L8U5ZtLsIFUC&oi=fnd&pg=PR9&dq=Liquid+Chromatography+%E2%80%93Mass+Spectrometry:+An+Introduc-tion.+Robert+E.+Ardrey+Copyright+%C2%B6+2003+John+Wiley+%26+Sons,+Ltd&ots=tainTG3KuH&sig=PxEiyyj0dqX07ui7f5wKZSaKBrc

Bartnik, M., & Facey, P. (2017). Glycosides. In Pharmacognosy: Fundamentals, Applications and Strategy (pp. 101–161). https://doi.org/10.1016/B978-0-12-802104-0.00008-1

Bayati, S., & Yazdanparast, R. (2011). Anti-oxidant and free radical scavenging po-tential of yakuchinone B derivatives in reduction of lipofuscin formation using H2O2-treated neuroblastoma cells. Ira-nian Biomedical Journal, 15(4), 134.

Bonham, M., Posakony, J., Coleman, I., Montgomery, B., Simon, J., & Nelson, P. S. (2005). Characterization of chem-ical constituents in Scutellaria bai-calensis with antiandrogenic and growth-inhibitory activities toward pros-tate carcinoma. Clinical Cancer Re-search, 11(10), 3905–3914.

Boussouar, A., Barette, C., Nadon, R., Saint-Léger, A., Broucqsault, N., Ottaviani, A., Firozhoussen, A., Lu, Y., Lafane-chère, L., & Gilson, E. (2013). Acacetin and chrysin, two polyphenolic com-pounds, alleviate telomeric position ef-fect in human cells. Molecular Therapy-Nucleic Acids, 2. https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(16)30174-3

Bui, T. T., Piao, C. H., Song, C. H., & Chai, O. H. (2017). Skullcapflavone II atten-uates ovalbumin-induced allergic rhini-tis through the blocking of Th2 cytokine production and mast cell histamine re-lease. International Immunopharmacol-ogy, 52, 77–84.

Chandrasekaran, C. V., Thiyagarajan, P., Deepak, H. B., & Agarwal, A. (2011). In vitro modulation of LPS/calcimycin in-duced inflammatory and allergic me-diators by pure compounds of An-drographis paniculata (King of bitters) extract. International Immunopharma-cology, 11(1), 79–84.

Cheng, H.-L., Zhang, L.-J., Liang, Y.-H., Hsu, Y.-W., Lee, I.-J., Liaw, C.-C., Hwang, S.-Y., & Kuo, Y.-H. (2013). Antiinflam-matory and antioxidant flavonoids and phenols from Cardiospermum halica-cabum (倒地鈴 Dào Dì Líng). Journal of Traditional and Complementary Med-icine, 3(1), 33–40.

Choi, D.-Y., Lee, J. Y., Kim, M.-R., Woo, E.-R., Kim, Y. G., & Kang, K. W. (2005). Chrysoeriol potently inhibits the induc-tion of nitric oxide synthaseby blocking AP-1 activation. Journal of Biomedical Science, 12(6), 949–959. https://doi.org/10.1007/s11373-005-9028-8

Chun, K.-S., Kang, J.-Y., Kim, O. H., Kang, H., & Surh, Y.-J. (2002). Effects of ya-kuchinone A and yakuchinone В on the Phorbol ester-induced expression of COX-2 and iNOS and activation of NF-kB in mouse skin. Journal of Environ-mental Pathology, Toxicology and On-cology, 21(2).

Chun, K.-S., Sohn, Y., Kim, H.-S., Kim, O. H., Park, K.-K., Lee, J.-M., Lee, J., Lee, J.-Y., Moon, A., & Lee, S. S. (1999). Anti-tumor promoting potential of naturally occurring diarylheptanoids structurally related to curcumin. Muta-tion Research/Fundamental and Mo-lecular Mechanisms of Mutagenesis, 428(1–2), 49–57.

Corrêa, W. R., Serain, A. F., Aranha Netto, L., Marinho, J. V. N., Arena, A. C., Figueiredo De Santana Aquino, D., Ku-raoka-Oliveira, Â. M., Júnior, A. J., Bernal, L. P. T., Kassuya, C. A. L., & Salvador, M. J. (2018). Anti-Inflammatory and Antioxidant Proper-ties of the Extract, Tiliroside, and Patu-letin 3-O- β -D-Glucopyranoside from Pfaffia townsendii (Amaranthaceae). Evidence-Based Complementary and Alternative Medicine, 2018, 1–9. https://doi.org/10.1155/2018/6057579

Csupor, D., Widowitz, U., Blazsó, G., Laczkó‐Zöld, E., Tatsimo, J. S. N., Balogh, Á., Boros, K., Dankó, B., Bau-er, R., & Hohmann, J. (2013). Anti‐inflammatory Activities of Eleven Cen-taurea Species Occurring in the Carpa-thian Basin. Phytotherapy Research, 27(4), 540–544. https://doi.org/10.1002/ptr.4754

Daroui-Mokaddem, H., Kabouche, A., Bou-taghane, N., Calliste, C.-A., Duroux, J.-L., & Kabouche, Z. (2017). Antioxidant Flavonoids from Asteriscus Maritimus. Natural Product Communications, 12(3), 1934578X1701200. https://doi.org/10.1177/1934578X1701200319

Elfahmi, Woerdenbag, H. J., & Kayser, O. (2014). Jamu: Indonesian traditional herbal medicine towards rational phy-topharmacological use. Journal of Herbal Medicine, 4(2), 51–73. https://doi.org/10.1016/j.hermed.2014.01.002

Ezzat, S. M., & Salama, M. M. (2014). A new α-glucosidase inhibitor from Achillea fragrantissima (Forssk.) Sch. Bip. Growing in Egypt. Natural Product Re-search, 28(11), 812–818. https://doi.org/10.1080/14786419.2014.891203

Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., & Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of Food Science and Technology, 52(2), 1212. https://doi.org/10.1007/s13197-013-1105-9

Guerrero, M. F., Puebla, P., Carrón, R., Mar-tin, M. L., & Román, L. S. (2002). Quercetin 3, 7-dimethyl ether: A vaso-relaxant flavonoid isolated from Croton schiedeanus Schlecht. Journal of Pharmacy and Pharmacology, 54(10), 1373–1378.

Gupta, S. K., Banerjee, A. B., & Achari, B. (1976). Isolation of Ethyl p-methoxycinnamate, the major antifun-gal principle of Curcumba zedoaria. Lloydia, 39(4), 218–222.

Ha, S. K., Moon, E., Lee, P., Ryu, J. H., Oh, M. S., & Kim, S. Y. (2012). Acacetin Attenuates Neuroinflammation via Regulation the Response to LPS Stimuli In Vitro and In Vivo. Neuro-chemical Research, 37(7), 1560–1567. https://doi.org/10.1007/s11064-012-0751-z

Han, L., Sumiyoshi, M., Zheng, Y., Okuda, H., & Kimura, Y. (2003). Anti‐obesity action of Salix matsudana leaves (Part 2). Isolation of anti‐obesity effectors from polyphenol fractions of Salix matsudana. Phytotherapy Research, 17(10), 1195–1198. https://doi.org/10.1002/ptr.1405

Hasegawa, T., Hashimoto, M., Fujihara, T., & Yamada, H. (2016). Aroma profile of galangal composed of cinnamic acid derivatives and their structure-odor re-lationships. Natural Product Communi-cations, 11(10), 1934578X1601101012.

He, Z.-H., Yue, G. G.-L., Lau, C. B.-S., Ge, W., & But, P. P.-H. (2012). Antiangio-genic effects and mechanisms of trans-ethyl p-methoxycinnamate from Kaempferia galanga L. Journal of Agri-cultural and Food Chemistry, 60(45), 11309–11317.

Hsu, J.-Y., Rao Sathyan, A., Hsu, K.-C., Chen, L.-C., Yen, C.-C., Tseng, H.-J., Wu, K.-C., Liu, H.-K., & Huang, W.-J. (2021). Synthesis of Yakuchinone B-inspired inhibitors against islet amyloid polypeptide aggregation. Journal of Natural Products, 84(4), 1096–1103.

Huang, L., Yagura, T., & Chen, S. (2008). Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. Journal of Ethnopharma-cology, 120(1), 123–125.

Jabeen, A., Mesaik, M. A., Simjee, S. U., Bano, S., & Faizi, S. (2016). Anti-TNF-α and anti-arthritic effect of patuletin: A rare flavonoid from Tagetes patula. In-ternational Immunopharmacology, 36, 232–240.

Jagadish, P. C., Latha, K. P., Mudgal, J., & Nampurath, G. K. (2016). Extraction, characterization and evaluation of Kaempferia galanga L.(Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats. Journal of Ethnopharmacology, 194, 434–439.

Jang, H.-Y., Ahn, K.-S., Park, M.-J., Kwon, O.-K., Lee, H.-K., & Oh, S.-R. (2012). Skullcapflavone II inhibits ovalbumin-induced airway inflammation in a mouse model of asthma. International Immunopharmacology, 12(4), 666–674.

Jilan Maulida, F. (n.d.). Keberadaan Bakteri Escherichia Coli Pada Jamu Gendong Di Jalan Sumatera Kecamatan Sum-bersari Kabupaten Jember (The Exist-ence Of Bacteria Escherichia Coli In Jamu Gendong on The Streets of Su-matera, Sumbersari, Jember).

Kim, J. H., Cho, Y. H., Park, S. M., Lee, K. E., Lee, J. J., Lee, B. C., Pyo, H. B., Song, K. S., Park, H. D., & Yun, Y. P. (2004). Antioxidants and inhibitor of matrix metalloproteinase-1 expression from leaves ofzostera marina L. Ar-chives of Pharmacal Research, 27(2), 177–183. https://doi.org/10.1007/BF02980103

Ko, H.-J., Kim, H. J., Kim, S. Y., Yun, H.-Y., Baek, K. J., Kwon, N. S., Whang, W. K., Choi, H.-R., Park, K.-C., & Kim, D.-S. (2014). Hypopigmentary Effects of Ethyl P‐Methoxycinnamate Isolated from Kaempferia galanga. Phytothera-py Research, 28(2), 274–279.

Ko, W.-C., Kuo, S.-W., Sheu, J.-R., Lin, C.-H., Tzeng, S.-H., & Chen, C.-M. (1999). Relaxant Effects of Quercetin Methyl Ether Derivatives in Isolated Guinea Pig Trachea and their Struc-ture-Activity Relationships. Planta Medica, 65(03), 273–275. https://doi.org/10.1055/s-2006-960776

Kumar, A. (2020). Phytochemistry, pharma-cological activities and uses of tradi-tional medicinal plant Kaempferia ga-langa L.–An overview. Journal of Eth-nopharmacology, 253, 112667.

Lakshmanan, D., Werngren, J., Jose, L., Su-ja, K. P., Nair, M. S., Varma, R. L., Mundayoor, S., Hoffner, S., & Kumar, R. A. (2011). Ethyl p-methoxycinnamate isolated from a tra-ditional anti-tuberculosis medicinal herb inhibits drug resistant strains of Myco-bacterium tuberculosis in vitro. Fitot-erapia, 82(5), 757–761.

Lee, H., Lee, D. H., Oh, J.-H., & Chung, J. H. (2021). Skullcapflavone ii Suppresses tnf-α/ifn-γ-induced Tarc, mdc, and Ctss Production in Hacat Cells. International Journal of Molecular Sciences, 22(12), 6428.

Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., & Jeong, W. (2019). Skullcapfla-vone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. The FASEB Journal, 33(2), 2026–2036. https://doi.org/10.1096/fj.201800866RR

Limboonreung, T., Tuchinda, P., & Chongthammakun, S. (2020). Chrysoeriol mediates mitochondrial protection via PI3K/Akt pathway in MPP+ treated SH-SY5Y cells. Neuro-science Letters, 714, 134545.

Liou, C.-J., Wu, S.-J., Chen, L.-C., Yeh, K.-W., Chen, C.-Y., & Huang, W.-C. (2017). Acacetin from traditionally used Saussurea involucrata Kar. Et Kir. Suppressed adipogenesis in 3T3-L1 ad-ipocytes and attenuated lipid accumula-tion in obese mice. Frontiers in Phar-macology, 8, 589.

Lucini, L., Pellizzoni, M., Pellegrino, R., Moli-nari, G. P., & Colla, G. (2015). Phyto-chemical constituents and in vitro radi-cal scavenging activity of different Aloe species. Food Chemistry, 170, 501–507.

Muhamad, P., Panrit, L., Chaijaroenkul, W., & Na-Bangchang, K. (2020). Cytotoxi-city, cell cycle arrest, and apoptosis in-duction activity of ethyl-p-methoxycinnamate in cholangiocarci-noma cell. Asian Pacific Journal of Cancer Prevention: APJCP, 21(4), 927.

Nag, S., & Mandal, S. (2015). Importance of ekangi (Kaempferia galanga l.) As me-dicinal plants-a review. Int J Innov Res Rev, 3, 99–106.

Nguyen, T. Y., To, D. C., Tran, M. H., Lee, J. S., Lee, J. H., Kim, J. A., Woo, M. H., & Min, B. S. (2015). Anti-inflammatory Flavonoids Isolated from Passiflora foetida. Natural Product Communica-tions, 10(6), 1934578X1501000. https://doi.org/10.1177/1934578X1501000634

Nishidono, Y., Fujita, T., Kawanami, A., Nishizawa, M., & Tanaka, K. (2017). Identification of PGC-1α activating constituents in Zingiberaceous crude drugs. Fitoterapia, 122, 40–44.

Ohishi, K., Aiyama, R., Hatano, H., Yoshida, Y., Wada, Y., Yokoi, W., Sawada, H., Watanabe, T., & Yokokura, T. (2001). Structure-activity relationships of N-(3, 5-dimethoxy-4-n-octyloxycinnamoyl)-N’-(3, 4-dimethylphenyl) piperazine and analogues as inhibitors of acyl-CoA: cholesterol O-acyltransferase. Chemi-cal and Pharmaceutical Bulletin, 49(7), 830–839.

Parsafar, S., Nayeri, Z., Aliakbari, F., Shahi, F., Mohammadi, M., & Morshedi, D. (2020). Multiple neuroprotective fea-tures of Scutellaria pinnatifida–derived small molecule. Heliyon, 6(8).

Pawłowska, K., Czerwińska, M. E., Wilczek, M., Strawa, J., Tomczyk, M., & Grani-ca, S. (2018). Anti-inflammatory Poten-tial of Flavonoids from the Aerial Parts of Corispermum marschallii. Journal of Natural Products, 81(8), 1760–1768. https://doi.org/10.1021/acs.jnatprod.8b00152

Pitt, J. J. (2009). Principles and Applications of Liquid Chromatography-Mass Spec-trometry in Clinical Biochemistry. The Clinical Biochemist Reviews, 30(1), 19.

Punia, R., Raina, K., Agarwal, R., & Singh, R. P. (2017). Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One, 12(8), e0182870.

Rauter, A. P., Martins, A., Borges, C., Mota‐Filipe, H., Pinto, R., Sepodes, B., & Justino, J. (2010). Antihyperglycaemic and protective effects of flavonoids on streptozotocin–induced diabetic rats. Phytotherapy Research, 24(S2). https://doi.org/10.1002/ptr.3017

Rauwald, H. W., Maucher, R., Dannhardt, G., & Kuchta, K. (2021). Dihydroiso-coumarins, naphthalenes, and further polyketides from Aloe vera and A. plicatilis: Isolation, identification and their 5-LOX/COX-1 inhibiting potency. Molecules, 26(14), 4223.

Rijal, S., Changdar, N., Kinra, M., Kumar, A., Nampoothiri, M., Arora, D., Shenoy, R. R., Ranganath Pai, K. S., Joseph, A., & Mudgal, J. (2019). Neuromodulatory potential of phenylpropanoids; para-methoxycinnamic acid and ethyl-p-methoxycinnamate on aluminum-induced memory deficit in rats. Toxi-cology Mechanisms and Methods, 29(5), 334–343.

Roy, M., Chakraborty, S., Siddiqi, M., & Bhattacharya, R. K. (2002). Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pac J Cancer Prev, 3(1), 61–67.

Shirota, S., Miyazaki, K., Aiyama, R., Ichioka, M., & Yokokura, T. (1994). Ty-rosinase inhibitors from crude drugs. Biological and Pharmaceutical Bulletin, 17(2), 266–269.

Solnier, J., Martin, L., Bhakta, S., & Bucar, F. (2020). Flavonoids as novel efflux pump inhibitors and antimicrobials against both environmental and patho-genic intracellular mycobacterial spe-cies. Molecules, 25(3), 734.

Song, L., Wu, X., Xie, J., Zhang, H., Yang, H., Zeng, Q., Yang, X., & Xie, W. (2021). Kaempferia galanga Linn. Ex-tract–A potential antibacterial agent for preservation of poultry products. LWT, 147, 111553.

Srivastava, N., Mishra, S., Iqbal, H., Chanda, D., & Shanker, K. (2021). Standardiza-tion of Kaempferia galanga L. rhizome and vasorelaxation effect of its key metabolite ethyl p-methoxycinnamate. Journal of Ethnopharmacology, 271, 113911.

Surh, Y.-J. (1999). Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic sub-stances. Mutation Re-search/Fundamental and Molecular Mechanisms of Mutagenesis, 428(1–2), 305–327.

Swain, S. S., Hussain, T., & Pati, S. (2021). Drug-lead anti-tuberculosis phytochem-icals: A systematic review. Current Topics in Medicinal Chemistry, 21(20), 1832–1868.

Tanagornmeatar, K., Chaotham, C., Sritu-larak, B., Likhitwitayawuid, K., & Chan-vorachote, P. (2014). Cytotoxic and an-ti-metastatic activities of phenolic com-pounds from Dendrobium ellipsophyl-lum. Anticancer Research, 34(11), 6573–6579.

Thermo Scientific. (2024). Liquid Chromatog-raphy Mass Spectrometry (LC-MS) In-formation—ID. https://www.thermofisher.com/id/en/home/industrial/mass-spectrometry/mass-spectrometry-learning-center/liquid-chromatography-mass-spectrometry-lc-ms-information.html

Tofighi, Z., Alipour, F., Hadavinia, H., Abdol-lahi, M., Hadjiakhoondi, A., & Yassa, N. (2014). Effective antidiabetic and anti-oxidant fractions of Otostegia persica extract and their constituents. Pharma-ceutical Biology, 52(8), 961–966. https://doi.org/10.3109/13880209.2013.874463

Tritripmongkol, P., Plengsuriyakarn, T., Tar-asuk, M., & Na-Bangchang, K. (2020). In vitro cytotoxic and toxicological ac-tivities of ethanolic extract of Kaempfe-ria galanga Linn. And its active compo-nent, ethyl-p-methoxycinnamate, against cholangiocarcinoma. Journal of Integrative Medicine, 18(4), 326–333.

Ullah, M. A., Johora, F. T., Sarkar, B., Araf, Y., & Rahman, M. H. (2020). Curcumin analogs as the inhibitors of TLR4 path-way in inflammation and their drug like potentialities: A computer-based study. Journal of Receptors and Signal Transduction, 40(4), 324–338.

Umar, M. I., Asmawi, M. Z., Sadikun, A., Atangwho, I. J., Yam, M. F., Altaf, R., & Ahmed, A. (2012). Bioactivity-guided isolation of ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Mole-cules, 17(7), 8720–8734.

Umar, M. I., Asmawi, M. Z., Sadikun, A., Majid, A. M. S. A., Al-Suede, F. S. R., Hassan, L. E. A., Altaf, R., & Ahamed, M. B. K. (2014). Ethyl-p-methoxycinnamate isolated from Kaempferia galanga inhibits inflamma-tion by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions. Clinics, 69, 134–144.

Walther, C., Marwa, K. J., Seni, J., Hamis, P., Silago, V., Mshana, S. E., & Jande, M. (2016). Microbial contamination of traditional liquid herbal medicinal prod-ucts marketed in Mwanza city: Magni-tude and risk factors. Pan African Med-ical Journal, 23(1). https://www.ajol.info/index.php/pamj/article/view/138665

Wang FangLin, W. F., Luo JianGuang, L. J., Wang XiaoBing, W. X., & Kong LingYi, K. L. (2013). A pair of sulfonated dia-rylheptanoid epimers from Kaempferia galanga. https://www.cabidigitallibrary.org/doi/full/10.5555/20133162914

Wu, H.-J., Wu, W., Sun, H.-Y., Qin, G.-W., Wang, H.-B., Wang, P., Yalamanchili, H. K., Wang, J., Tse, H.-F., & Lau, C.-P. (2011). Acacetin causes a frequen-cy-and use-dependent blockade of hKv1. 5 channels by binding to the S6 domain. Journal of Molecular and Cel-lular Cardiology, 51(6), 966–973.

Xue, Y., & Chen, H. (2002). Study on the an-ti-carcinogenic effects of three com-pounds in Kaempferia galanga L. Wei Sheng Yan Jiu= Journal of Hygiene Research, 31(4), 247–248, 251.

Yamazaki, R., Hatano, H., Aiyama, R., Matsuzaki, T., Hashimoto, S., & Yoko-kura, T. (2000). Diarylheptanoids sup-press expression of leukocyte adhesion molecules on human vascular endothe-lial cells. European Journal of Pharma-cology, 404(3), 375–385.

Yang, Y., Zhou, X., Xiao, M., Hong, Z., Gong, Q., Jiang, L., & Zhou, J. (2010). Dis-covery of chrysoeriol, a PI3K-AKT-mTOR pathway inhibitor with potent antitumor activity against human multi-ple myeloma cells in vitro. Journal of Huazhong University of Science and Technology [Medical Sciences], 30(6), 734–740. https://doi.org/10.1007/s11596-010-0649-4

You, K. M., Jong, H.-G., & Kim, H. P. (1999). Inhibition of cyclooxygen-ase/lipoxygenase from human platelets by polyhydroxylated/methoxylated fla-vonoids isolated from medicinal plants. Archives of Pharmacal Research, 22(1), 18–24. https://doi.org/10.1007/BF02976430

Yu, J. G., Yu, D. L., Zhang, S., Luo, X. Z., Sun, L., Zheng, C. C., & Chen, Y. H. (2000). Studies on the chemical con-stituents of Kaempferia marginata. Yao Xue Xue Bao= Acta Pharmaceutica Sinica, 35(10), 760–763.

Zhao, N., Dong, Q., Fu, X.-X., Du, L.-L., Cheng, X., Du, Y.-M., & Liao, Y.-H. (2014). Acacetin blocks kv1. 3 chan-nels and inhibits human T cell activa-tion. Cellular Physiology and Biochem-istry, 34(4), 1359–1372.

Most read articles by the same author(s)