BIOTECHNOLOGY OF PRODIGIOSIN: RECENT DEVELOPMENTS AND TECHNOLOGICAL CHALLENGES

Main Article Content

Wani Devita Gunardi
Margaretha
Kris Herawan Timotius

Abstract

Background: Prodigiosin is produced by Serratia marcescens. It has several pharmacological benefits, such as anticancer, antimicrobial, and antidaibetic. However, prodigiosin production still faces problems because it cannot be produced effectively, efficiently, and cheaply. Objective: This study aimed to conduct a review that can explain the upstream and the downstream process in prodigiosin production. Methods: Articles were searched from PubMed and ScienceDirect with the keywords prodigiosin and Serratia marcescens from Juny until September 2023 including review and original article. Relevant data and information were then extracted. Results: Prodigiosin has spectrometrical characteristics, which are crucial for evaluating its production, extraction, and purification identification. Submerged or solid-state fermentation is applicable for prodigiosin production, but solid-state fermentation is better. The kind of growing substrates and the cultural condition influence it. The use of oil-based carbon sources is recommended for the high productivity of prodigiosin. In order to have a cheap, effective, and efficient production process, different experiments have been conducted. Standard extraction and purification methods can carry out the downstream process. Conclusion: Prodigiosin can be produced via submerged or solid-state fermentation. Using cheap and readily available substrate are the key to success for the upstream and downstream process. The standard extraction and purification methods are available.This findings can be used as a basis for further research regarding large-scale production of prodigiosin with the cheap, effective, and efficient methode.

Article Details

How to Cite
Gunardi, W. D., Margaretha, & Timotius, K. H. (2023). BIOTECHNOLOGY OF PRODIGIOSIN: RECENT DEVELOPMENTS AND TECHNOLOGICAL CHALLENGES. Jurnal Bioteknologi Dan Biosains Indonesia, 10(2), 251–269. Retrieved from https://ejournal.brin.go.id/JBBI/article/view/2010
Section
Articles

References

Abdul Manas, N. H., L. Y. Chong, Y. M. Tesfamariam, A. Zulkharnain, H. Mahmud, D. S. Abang Mahmod, S. F. Z. Mohamad Fuzi and N. I. Wan Azelee (2020). "Effects of oil substrate supplementation on production of prodigiosin by Serratia nematodiphila for dye-sensitized solar cell." J Biotechnol 317: 16-26 https://doi.org/10.1016/j.jbiotec.2020.04.011.

Allen, G. R., J. L. Reichelt and P. P. Gray (1983). "Influence of Environmental Factors and Medium Composition on Vibrio gazogenes Growth and Prodigiosin Production." Appl Environ Microbiol 45(6): 1727-1732 https://doi.org/10.1128/aem.45.6.1727-1732.1983.

Andreeva, I. N. and T. I. Ogorodnikova (1999). "[The effect of the cultivation conditions on the growth and pigmentation of Serratia marcescens]." Zh Mikrobiol Epidemiol Immunobiol(3): 16-20.

Anwar, M. M., C. Albanese, N. M. Hamdy and A. S. Sultan (2022). "Rise of the natural red pigment 'prodigiosin' as an immunomodulator in cancer." Cancer Cell Int 22(1): 419 https://doi.org/10.1186/s12935-022-02815-4.

Araújo, R. G., N. R. Zavala, C. Castillo-Zacarías, M. E. Barocio, E. Hidalgo-Vázquez, L. Parra-Arroyo, J. A. Rodríguez-Hernández, M. A. Martínez-Prado, J. E. Sosa-Hernández, M. Martínez-Ruiz, W. N. Chen, D. Barceló, H. M. N. Iqbal and R. Parra-Saldívar (2022). "Recent Advances in Prodigiosin as a Bioactive Compound in Nanocomposite Applications." Molecules 27(15) https://doi.org/10.3390/molecules27154982.

Aruldass, C. A., C. K. Venil, Z. A. Zakaria and W. A. Ahmad (2014). "Brown sugar as a low-cost medium for the production of prodigiosin by locally isolated Serratia marcescens UTM1." International Biodeterioration & Biodegradation 95: 19-24 https://doi.org/10.1016/j.ibiod.2014.04.006.

Asitok, A., M. Ekpenyong, U. Ben, R. Antigha, N. Ogarekpe, A. Rao, A. Akpan, N. Benson, J. Essien and S. Antai (2023). "Stochastic modeling and meta-heuristic multivariate optimization of bioprocess conditions for co-valorization of feather and waste frying oil toward prodigiosin production." Prep Biochem Biotechnol 53(6): 690-703 https://doi.org/10.1080/10826068.2022.2134891.

Balasubramaniam, B., R. Alexpandi and D. R. Darjily (2019). "Exploration of the optimized parameters for bioactive prodigiosin mass production and its biomedical applications in vitro as well as in silico." Biocatalysis and Agricultural Biotechnology 22: 101385 https://doi.org/10.1016/j.bcab.2019.101385.

Bhagwat, A. and U. Padalia (2020). "Optimization of prodigiosin biosynthesis by Serratia marcescens using unconventional bioresources." J Genet Eng Biotechnol 18(1): 26 https://doi.org/10.1186/s43141-020-00045-7.

Cediel Becerra, J. D. D., J. A. Suescún Sepúlveda and J. L. Fuentes (2022). "Prodigiosin Production and Photoprotective/Antigenotoxic Properties in Serratia marcescens Indigenous Strains from Eastern Cordillera of Colombia." Photochem Photobiol 98(1): 254-261 https://doi.org/10.1111/php.13507.

Chen, W. C., M. J. Tsai, P. C. Soo, L. F. Wang, S. L. Tsai, Y. K. Chang and Y. H. Wei (2018). "Construction and co-cultivation of two mutant strains harboring key precursor genes to produce prodigiosin." J Biosci Bioeng 126(6): 783-789 https://doi.org/10.1016/j.jbiosc.2018.06.010.

Chilczuk, T., R. Monson, P. Schmieder, V. Christov, H. Enke, G. Salmond and T. H. J. Niedermeyer (2020). "Ambigols from the Cyanobacterium Fischerella ambigua Increase Prodigiosin Production in Serratia spp." ACS Chem Biol 15(11): 2929-2936 https://doi.org/10.1021/acschembio.0c00554.

Choi, S. Y., S. Lim, K. H. Yoon, J. I. Lee and R. J. Mitchell (2021). "Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin." J Biol Eng 15(1): 10 https://doi.org/10.1186/s13036-021-00262-9.

de Araújo, H. W., K. Fukushima and G. M. Takaki (2010). "Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate." Molecules 15(10): 6931-6940 https://doi.org/10.3390/molecules15106931.

Domröse, A., A. S. Klein, J. Hage-Hülsmann, S. Thies, V. Svensson, T. Classen, J. Pietruszka, K. E. Jaeger, T. Drepper and A. Loeschcke (2015). "Efficient recombinant production of prodigiosin in Pseudomonas putida." Front Microbiol 6: 972 https://doi.org/10.3389/fmicb.2015.00972.

Dos Santos, R. A., D. M. Rodríguez, L. A. R. da Silva, S. M. de Almeida, G. M. de Campos-Takaki and M. A. B. de Lima (2021). "https://doi.org/10.1007/s00203-021-02399-z." Arch Microbiol 203(7): 4091-4100 https://doi.org/10.1007/s00203-021-02399-z.

Elkenawy, N. M., A. S. Yassin, H. N. Elhifnawy and M. A. Amin (2017). "Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation." Biotechnol Rep (Amst) 14: 47-53 https://doi.org/10.1016/j.btre.2017.04.001.

Ferreira, A. I., E. S. F. Oliveira, J. Reis, M. Henriques and J. Almeida (2022). "Serratia marcescens Endocarditis: A Case Report and Literature Review." Acta Med Port 35(12): 908-912 https://doi.org/10.20344/amp.16377.

Fineran, P. C., L. Everson, H. Slater and G. P. C. Salmond (2005). "A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia." Microbiology (Reading) 151(Pt 12): 3833-3845 https://doi.org/10.1099/mic.0.28251-0.

Fineran, P. C., H. Slater, L. Everson, K. Hughes and G. P. Salmond (2005). "Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production." Mol Microbiol 56(6): 1495-1517 https://doi.org/10.1111/j.1365-2958.2005.04660.x.

Fineran, P. C., N. R. Williamson, K. S. Lilley and G. P. Salmond (2007). "Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX." J Bacteriol 189(21): 7653-7662 https://doi.org/10.1128/jb.00671-07.

Fürstner, A. (2003). "Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years." Angew Chem Int Ed Engl 42(31): 3582-3603 https://doi.org/10.1002/anie.200300582.

Giri, A. V., N. Anandkumar, G. Muthukumaran and G. Pennathur (2004). "A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil." BMC Microbiol 4: 11 https://doi.org/10.1186/1471-2180-4-11.

Gondil, V. S., M. Asif and T. C. Bhalla (2017). "Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity." 3 Biotech 7(5): 338 https://doi.org/10.1007/s13205-017-0979-z.

Gristwood, T., P. C. Fineran, L. Everson, N. R. Williamson and G. P. Salmond (2009). "The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate." BMC Microbiol 9: 112 https://doi.org/10.1186/1471-2180-9-112.

Gristwood, T., M. B. McNeil, J. S. Clulow, G. P. Salmond and P. C. Fineran (2011). "PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules." J Bacteriol 193(5): 1076-1085 https://doi.org/10.1128/jb.00352-10.

Haddix, P. L. (2021). "Associations between cellular levels of ATP and prodigiosin pigment throughout the growth cycle of Serratia marcescens." Can J Microbiol 67(9): 639-650 https://doi.org/10.1139/cjm-2020-0619.

Haddix, P. L. and R. M. Q. Shanks (2018). "Prodigiosin pigment of Serratia marcescens is associated with increased biomass production." Arch Microbiol 200(7): 989-999 https://doi.org/10.1007/s00203-018-1508-0.

Haddix, P. L. and R. M. Q. Shanks (2020). "Production of prodigiosin pigment by Serratia marcescens is negatively associated with cellular ATP levels during high-rate, low-cell-density growth." Can J Microbiol 66(3): 243-255 https://doi.org/10.1139/cjm-2019-0548.

Han, R., R. Xiang, J. Li, F. Wang and C. Wang (2021). "High-level production of microbial prodigiosin: A review." J Basic Microbiol 61(6): 506-523 https://doi.org/10.1002/jobm.202100101.

Heinemann, B., A. J. Howard and H. J. Palocz (1970). "Influence of dissolved oxygen levels on production of L-asparaginase and prodigiosin by Serratia marcescens." Appl Microbiol 19(5): 800-804 https://doi.org/10.1128/am.19.5.800-804.1970.

Horng, Y. T., K. C. Chang, Y. N. Liu, H. C. Lai and P. C. Soo (2010). "The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens." Int J Med Microbiol 300(5): 304-312 https://doi.org/10.1016/j.ijmm.2010.01.003.

Horng, Y. T., S. C. Deng, M. Daykin, P. C. Soo, J. R. Wei, K. T. Luh, S. W. Ho, S. Swift, H. C. Lai and P. Williams (2002). "The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens." Mol Microbiol 45(6): 1655-1671 https://doi.org/10.1046/j.1365-2958.2002.03117.x.

Hu, D. X., D. M. Withall, G. L. Challis and R. J. Thomson (2016). "Structure, Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products." Chem Rev 116(14): 7818-7853 https://doi.org/10.1021/acs.chemrev.6b00024.

Islan, G. A., B. Rodenak-Kladniew, N. Noacco, N. Duran and G. R. Castro (2022). "Prodigiosin: a promising biomolecule with many potential biomedical applications." Bioengineered 13(6): 14227-14258 https://doi.org/10.1080/21655979.2022.2084498.

Jameel, M., K. Umar, T. Parveen, I. M. I. Ismail, H. A. Qari, A. A. Yaqoob and M. N. M. Ibrahim (2023). Chapter 12 - Extraction of natural dyes from agro-industrial waste. Extraction of Natural Products from Agro-Industrial Wastes. S. Bhawani, A. Khan and F. Ahmad, Elsevier: 197-216.

Jardak, M., A. Atoissi, D. Msalbi, D. Atoui, B. Bouizgarne, G. Rigane, R. Ben Salem, S. Aifa and S. Mnif (2022). "Antibacterial, antibiofilm and cytotoxic properties of prodigiosin produced by a newly isolated Serratia sp. C6LB from a milk collection center." Microb Pathog 164: 105449 https://doi.org/10.1016/j.micpath.2022.105449.

Jia, X., F. Liu, K. Zhao, J. Lin, Y. Fang, S. Cai, C. Lin, H. Zhang, L. Chen and J. Chen (2021). "Identification of Essential Genes Associated With Prodigiosin Production in Serratia marcescens FZSF02." Front Microbiol 12: 705853 https://doi.org/10.3389/fmicb.2021.705853.

Jia, X., K. Zhao, F. Liu, J. Lin, C. Lin and J. Chen (2022). "Transcriptional factor OmpR positively regulates prodigiosin biosynthesis in Serratia marcescens FZSF02 by binding with the promoter of the prodigiosin cluster." Front Microbiol 13: 1041146 https://doi.org/10.3389/fmicb.2022.1041146.

Kalivoda, E. J., N. A. Stella, M. A. Aston, J. E. Fender, P. P. Thompson, R. P. Kowalski and R. M. Shanks (2010). "Cyclic AMP negatively regulates prodigiosin production by Serratia marcescens." Res Microbiol 161(2): 158-167 https://doi.org/10.1016/j.resmic.2009.12.004.

Karczewski, D., H. Bäcker, O. Andronic, A. Bedi, S. Adelhoefer, M. Müllner and M. R. Gonzalez (2023). "Serratia marcescens prosthetic joint infection: two case reports and a review of the literature." J Med Case Rep 17(1): 294 https://doi.org/10.1186/s13256-023-04021-w.

Khanam, B. and R. Chandra (2018). "Comparative analysis of prodigiosin isolated from endophyte Serratia marcescens." Lett Appl Microbiol 66(3): 194-201 https://doi.org/10.1111/lam.12840.

Kiziler, M. E., T. Orak, M. Doymus, N. P. Arslan, A. Adiguzel and M. Taskin (2021). "Farnesol and tyrosol: novel inducers for microbial production of carotenoids and prodigiosin." Arch Microbiol 204(1): 107 https://doi.org/10.1007/s00203-021-02742-4.

Kurbanoglu, E. B., M. Ozdal, O. G. Ozdal and O. F. Algur (2015). "Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone." Braz J Microbiol 46(2): 631-637 https://doi.org/10.1590/s1517-838246246220131143.

Li, P., S. He, X. Zhang, Q. Gao, Y. Liu and L. Liu (2022). "Structures, biosynthesis, and bioactivities of prodiginine natural products." Appl Microbiol Biotechnol 106(23): 7721-7735 https://doi.org/10.1007/s00253-022-12245-x.

Liang, T. W., S. Y. Chen, Y. C. Chen, C. H. Chen, Y. H. Yen and S. L. Wang (2013). "Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants." J Food Sci 78(11): M1743-1751 https://doi.org/10.1111/1750-3841.12272.

Liébana-Rodríguez, M., I. Portillo-Calderón, M. A. Fernández-Sierra, M. Delgado-Valverde, L. Martín-Hita and J. Gutiérrez-Fernández (2023). "Nosocomial outbreak caused by Serratia marcescens in a neonatology intensive care unit in a regional hospital. Analysis and improvement proposals." Enferm Infecc Microbiol Clin (Engl Ed) https://doi,org/10.1016/j.eimce.2023.04.019.

Liu, W., J. Yang, Y. Tian, X. Zhou, S. Wang, J. Zhu, D. Sun and C. Liu (2021). "An in situ extractive fermentation strategy for enhancing prodigiosin production from Serratia marcescens BWL1001 and its application to inhibiting the growth of Microcystis aeruginosa." Biochemical Engineering Journal 166: 107836 https://doi.org/10.1016/j.bej.2020.107836.

Liu, X., D. Xu, D. Wu, M. Xu, Y. Wang, W. Wang and T. Ran (2023). "BarA/UvrY differentially regulates prodigiosin biosynthesis and swarming motility in Serratia marcescens FS14." Res Microbiol 174(3): 104010 https://doi.org/10.1016/j.resmic.2022.104010.

Moreno, C. E. L., O. M. M. Velandia, C. A. B. Sánchez, J. S. M. Diaz and J. R. G. Herazo (2023). "Impact of urinary catheter on resistance patterns and clinical outcomes on complicated urinary tract infection." Int Urogynecol J 34(6): 1195-1201 https://doi.org/10.1007/s00192-022-05320-4.

National Center for Biotechnology Information (2023). "PubChem Patent Summary for US-6638968-B1, Use of prodigiosin for treating diabetes mellitus. ." Retrieved September 1, 2023 from https://pubchem.ncbi.nlm.nih.gov/patent/US-6638968-B1.

Prabowo, C. P. S., H. Eun, D. Yang, D. Huccetogullari, R. Jegadeesh, S.-J. Kim and S. Y. Lee (2022). "Production of natural colorants by metabolically engineered microorganisms." Trends in Chemistry 4(7): 608-626 https://doi.org/10.1016/j.trechm.2022.04.009.

Rajendran, P., P. Somasundaram and L. Dufossé (2023). "Microbial pigments: Eco-friendly extraction techniques and some industrial applications." Journal of Molecular Structure 1290: 135958 https://doi.org/10.1016/j.molstruc.2023.135958.

Ravindran, A., S. Sunderrajan and G. Pennathur (2019). "Phylogenetic Studies on the Prodigiosin Biosynthetic Operon." Curr Microbiol 76(5): 597-606 https://doi.org/10.1007/s00284-019-01665-0.

Rjazantseva, I. N., I. N. Andreeva and T. I. Ogorodnikova (1994). "Effect of various growth conditions on pigmentation of Serratia marcescens." Microbios 79(320): 155-161.

Rodríguez, J., C. Lobato, L. Vázquez, B. Mayo and A. B. Flórez (2023). "Prodigiosin-Producing Serratia marcescens as the Causal Agent of a Red Colour Defect in a Blue Cheese." Foods 12(12) https://doi.org/10.3390/foods12122388.

Sakuraoka, R., T. Suzuki and T. Morohoshi (2019). "Distribution and Genetic Diversity of Genes Involved in Quorum Sensing and Prodigiosin Biosynthesis in the Complete Genome Sequences of Serratia marcescens." Genome Biol Evol 11(3): 931-936 https://doi.org/10.1093/gbe/evz046.

Slater, H., M. Crow, L. Everson and G. P. Salmond (2003). "Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways." Mol Microbiol 47(2): 303-320 10.1046/j.1365-2958.2003.03295.x.

Solé, M., N. Rius, A. Francia and J. G. Lorén (1994). "The effect of pH on prodigiosin production by non-proliferating cells of Serratia marcescens." Lett Appl Microbiol 19(5): 341-344 https://doi.org/10.1111/j.1472-765x.1994.tb00470.x.

Song, M.-J., J. Bae, D.-S. Lee, C.-H. Kim, J.-S. Kim, S.-W. Kim and S.-I. Hong (2006). "Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95." Journal of Bioscience and Bioengineering 101(2): 157-161 https://doi.org/10.1263/jbb.101.157.

Stella, N. A., R. M. Lahr, K. M. Brothers, E. J. Kalivoda, K. M. Hunt, D. H. Kwak, X. Liu and R. M. Shanks (2015). "Serratia marcescens Cyclic AMP Receptor Protein Controls Transcription of EepR, a Novel Regulator of Antimicrobial Secondary Metabolites." J Bacteriol 197(15): 2468-2478 https://doi.org/10.1128/jb.00136-15.

Sudhakar, C., C. Shobana, T. Selvankumar and K. Selvam (2022). "Prodigiosin production from Serratia marcescens strain CSK and their antioxidant, antibacterial, cytotoxic effect and in silico study of caspase-3 apoptotic protein." Biotechnol Appl Biochem 69(5): 1984-1997 https://doi.org/10.1002/bab.2261.

Tanikawa, T., Y. Nakagawa and T. Matsuyama (2006). "Transcriptional downregulator hexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens." Microbiol Immunol 50(8): 587-596 https://doi.org/10.1111/j.1348-0421.2006.tb03833.x.

Tavares-Carreon, F., K. De Anda-Mora, I. C. Rojas-Barrera and A. Andrade (2023). "Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: a literature review." PeerJ 11: e14399 https://doi.org/10.7717/peerj.14399.

Thomson, N. R., M. A. Crow, S. J. McGowan, A. Cox and G. P. Salmond (2000). "Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control." Mol Microbiol 36(3): 539-556 https://doi.org/10.1046/j.1365-2958.2000.01872.x.

Tran, L. T., K. Techato, V. B. Nguyen, S. L. Wang, A. D. Nguyen, T. Q. Phan, M. D. Doan and K. Phoungthong (2021). "Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect." Molecules 26(20) https://doi.org/10.3390/molecules26206270.

Valentina, P.-C., P.-H. Alejandra, C.-C. Daniel and O.-E. Víctor Manuel (2019). "Antibacterial pigment production by Serratia marcescens using different casein types obtained from milk %J Revista Colombiana de Biotecnología." 21: 82-90.

Wang, S. L., V. B. Nguyen, C. T. Doan, T. N. Tran, M. T. Nguyen and A. D. Nguyen (2020). "Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review." Molecules 25(12) https://doi.org/10.3390/molecules25122744.

Williams, R. P. (1973). "Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens." Appl Microbiol 25(3): 396-402 https://doi.org/10.1128/am.25.3.396-402.1973.

Williamson, N. R., P. C. Fineran, F. J. Leeper and G. P. Salmond (2006). "The biosynthesis and regulation of bacterial prodiginines." Nat Rev Microbiol 4(12): 887-899 10.1038/nrmicro1531.

Xia, Y., G. Wang, X. Lin, X. Song and L. Ai (2016). "Solid-state fermentation with Serratia marcescens Xd-1 enhanced production of prodigiosin by using bagasse as an inertia matrix." Annals of Microbiology 66(3): 1239-1247 https://doi.org/10.1007/s13213-016-1208-4.

Xu, H., S. Wang, Y. Tian, K. Zhu, L. Zhu, S. Zhou, Y. Huang, Q. He and J. Liu (2021). "2-Keto-D-gluconic acid and prodigiosin producing by a Serratia marcescens." Prep Biochem Biotechnol 51(7): 678-685 https://doi.org/10.1080/10826068.2020.1852417.

Xu, Z., Y. Wang, K. F. Chater, H. Y. Ou, H. H. Xu, Z. Deng and M. Tao (2017). "Large-Scale Transposition Mutagenesis of Streptomyces coelicolor Identifies Hundreds of Genes Influencing Antibiotic Biosynthesis." Appl Environ Microbiol 83(6) https://doi.org/10.1128/aem.02889-16.

Zang, C.-Z., C.-W. Yeh, W.-F. Chang, C.-C. Lin, S.-C. Kan, C.-J. Shieh and Y.-C. Liu (2014). "Identification and enhanced production of prodigiosin isoform pigment from Serratia marcescens N10612." Journal of the Taiwan Institute of Chemical Engineers 45(4): 1133-1139 https://doi.org/10.1016/j.jtice.2013.12.016.

Zhao, W., D. Gao, L. Ning, Y. Jiang, Z. Li, B. Huang, A. Chen, C. Wang and Y. Liu (2022). "Prodigiosin inhibits the proliferation of glioblastoma by regulating the KIAA1524/PP2A signaling pathway." Sci Rep 12(1): 18527 https://doi.org/10.1038/s41598-022-23186-w.